
Chapter 21
Modularity-Based Selection
of the Number of Slices in Temporal
Network Clustering
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Tsuyoshi Murata, and Petter Holme

Abstract A popular way to cluster a temporal network is to transform it into a
sequence of networks, also called slices, where each slice corresponds to a time
interval and contains the vertices and edges existing in that interval. A reason to
perform this transformation is that after a network has been sliced, existing algorithms
designed to find clusters in multilayer networks can be used. However, to use this
approach, we need to know howmany slices to generate. This chapter discusses how
to select the number of slices when generalized modularity is used to identify the
clusters.
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21.1 Introduction

Clustering is one of the most studied network analysis tasks, with an ever-growing
number of articles proposingnewalgorithms and approaches (Fortunato 2010;Coscia
et al. 2011; Bothorel et al. 2015). The absence of a unique definition of a cluster can
partly explain the large number of available clustering algorithms existing. While
a cluster in a simple network is generally understood as a set of vertices that are
well connected to each other and less well connected to other vertices, different
algorithms use different specific definitions of cluster and clustering (that is, the
set of all clusters). When we add more information to vertices and edges, e.g., the
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Fig. 21.1 A temporal
network with three
timestamps

fact that edges only exist at specific times, defining what constitutes a cluster or a
clustering becomes even more challenging.

The availability of temporal information about the existence of edges has twomain
consequences on the clustering task. First, clustering algorithms not considering the
temporal information may miss clusters only existing at specific times (because they
are hidden by edges active at other times) or identify clusters that do not exist at
any specific time. Second, new types of clusters can be defined, for example, clusters
recurring at regular times or clusters growing, shrinking,merging, and splitting (Palla
et al. 2007). For these reasons, different extensions of clusteringmethods for temporal
networks have been proposed.

In this chapter, we focus on a common approach to temporal network clustering,
consisting of two steps: first, the temporal network is sliced into a sequence of
static networks, also called slices. This sequence of networks is a specific type of
multilayer network (Kivela et al. 2014; Boccaletti et al. 2014; Dickison et al. 2016).
Then a clustering algorithm for multilayer networks is used to discover clusters. An
example of this approach is shown in Figs.21.1 and 21.2.

While this approach allows reusing the many clustering algorithms defined for
multilayer networks, it relies on the ability to choose a number of slices leading to
good clustering. This number can sometimes be decided based on domain knowledge.
Still, for this approach to be usable in general, it is important to have ways to discover
a good number of slices directly from the data. This is fundamental in the absence
of domain knowledge, but also useful to check if the number suggested by a domain
expert is compatible with the data. Therefore, the research questionwe address in this
chapter is: given a temporal network and a multi-slice network clustering algorithm,
how can we find a number of slices for which well-defined clusters emerge?

The answer to this question depends on the algorithm used to cluster the network
after slicing. In this paper, we focus on one of the most used multilayer network clus-
tering algorithms: generalized Louvain (Mucha et al. 2010). Multi-slice modularity,

Fig. 21.2 Three temporal slices, one for each timestamp, where distinct clusters can be identified



21 Modularity-Based Selection of the Number … 437

the objective function used by the algorithm, considers modularity in each layer and
also increases when the same vertex is included in the same cluster in different layers.

If our objective is to find the number of slices leading to the best clustering, having
an objective function (in this case, multi-slice modularity) we might be tempted to
run the generalized Louvain optimization algorithm for different numbers of slices
and pick the result with the highest modularity. Given the same network (or the
same sliced sequence of networks), we can compare the modularity of different
clusterings to identify the best. In particular, if two clusterings of the same network
sliced into the same number of slices have a different modularity, it is often assumed
that the clustering with a higher modularity is a better clustering. Unfortunately,
in general, we cannot use modularity to compare clusterings of the same network
sliced differently. If we split the same network using two different numbers of slices,
a clustering of the former with higher modularity is not necessarily better than a
clustering of the latter with lower modularity.

As an example, Fig. 21.3 shows themodularity of the clusterings discovered by the
generalized Louvain algorithm on four real temporal networks varying the number
of slices. The four networks represent contacts between people measured by carried
wireless devices (haggle (Chaintreau et al. 2007)), face-to-face interactions (hyper,
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Fig. 21.3 Modularity of the partitions returned by the generalized Louvain algorithm varying the
number of slices for four real temporal networks
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infect (Isella et al. 2011)), and friendships between boys in a small high school in
Illinois (school (Coleman 1964)). We can see that the more slices we have, the higher
the modularity we get from the algorithm. This suggests that increasing modularity
values for different numbers of slices is not necessarily an indication of a better
clustering but can be a by-product of the changing size of the input networks.

To address this problem, we use the following hypothesis. Multi-slice modularity
has two components: one that increases with better clusterings and one that increases
just because the data size increases, e.g., if we duplicate a slice, the same cluster
extended across two slices will contain additional inter-slice edges. If this hypothesis
is correct, then we can try to isolate the first component in the modularity value and
use it to compare clusterings computed using different numbers of slices.

In this chapter, we show the dependency between the number of slices and multi-
slice modularity, both analytically and experimentally. We also use an edge reshuf-
fling algorithm to separate the effect of the number of slices, resulting in a first
corrected multi-slice modularity measure. We then experimentally validate the cor-
rected multi-slice modularity on synthetic networks where the best number of slices
is known in advance, and we identify clusters in different types of real temporal net-
works using the proposed approach.We conclude by discussing the limitations of the
reshuffling-based method and, more in general, of the modularity-based approach.

21.2 Related Work

For a detailed overview of clustering methods in temporal networks, we refer the
reader to the dedicated chapter in this book.

Clustering algorithms for temporal networks approach the temporal evolution of
networks in different ways. Algorithms building on segmentation seek time slices
containing well-defined community structures (quality) yet being similar to neigh-
boring slices (stability). For example, Aynaud and Guillaume (2011) builds a hierar-
chical time segmentation by extracting interesting time windows based on structural
changes and identifying a unique decomposition for the time windows. He et al.
(2017) uses the so-called Moore’s Visualization Method, which implies a certain
overlap of time slices. Simpler approaches segment the temporal network in equal
time slices or slices with similar edge density. In this chapter, we abstract from the
segmentation approach by using equal time slices and focus on how many slices
should be used.

After a temporal network has been converted into a multilayer network, sev-
eral approaches can be used to discover clusters. These include, among others,
algorithms based on generative models De Bacco et al. (2017), multilayer cliques
Tehrani and Magnani (2018), walks Boutemine and Bouguessa (2017), information
theory De Domenico et al. (2015), aggregation of single-layer clusterings Berlin-
gerio et al. (2013), Tagarelli et al. (2017), and modularity Mucha et al. (2010). An
overview of existing approaches is available inMagnani et al. (2021). Different algo-
rithms using different definitions of cluster require different measures to evaluate the
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goodness of a slicing, and the best number of slices does not need to be the same for
all approaches. In this chapter, we focus on modularity-based clustering.

Other algorithms avoid segmentation and instead track evolution in time by
observing events (i.e., birth, death, growth, contraction, merge, split, continue, resur-
gence) (Rossetti et al. 2017). Palla et al. (2007) build on clique percolation and
observe that small communities, in general, have static, time-independent member-
ship,while large communities are dynamic.Randomwalk-based approaches (Rosvall
and Bergstrom 2008) and stochastic block modeling (Matias and Miele 2017) are
other alternatives to modularity-based clustering.

21.3 Method

To evaluate the quality of a clustering we use the concept of modularity, describing
the fraction of the edges within communities minus the expected fraction if edges
were distributed at random, preserving degree distribution. For simple networks, and
without considering the so-called resolution parameter that was introduced at a later
time, modularity is defined as follows:

1
2m

∑

i, j

(
Ai j − ki k j

2m

)
δ(γi , γ j ) (21.1)

where A is the adjacency matrix, ki is the degree of vertex i , γi is the community id
of vertex i , δ(γi , γ j ) = 1 if γi = γ j and 0 otherwise, and m is the number of edges
in the network.

In multi-slice networks, modularity is defined as Mucha et al. (2010):

1
2µ

∑

i jsr

{(
Ai js − kisk js

2ms

)
δ(s, r)+ c jsrδ(i, j)

}
δ(γi,s, γ j,r ) (21.2)

where i and j indicate vertices and s and r slices. This formula is a combination of
the modularity in each slice plus a contribution c jsr for vertices included in the same
community in two slices. In this chapter, we consider the case where c jsr = 1 iff r =
s + 1, that is, the two slices are consecutive.µ is the number of all (intra-slice) edges
plus the sum of all c jsr .

The basic approachweuse to separate the effect of the presence of clusters from the
effect of just increasing the number of slices is based on an edge reshuffling process
that destroys the clusters in the network without affecting the degree distribution.
For each number of slices, the Louvain algorithm is run both on the original data and
on the reshuffled data where the clusters have been destroyed. The modularity on the
dataset without clusters indicates the effect of the number of slices on modularity.
Here we use the difference between the two to estimate the part of modularity due
to the presence of clusters. We call this difference corrected modularity.
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In particular, we run community detection multiple times and take the maximum
value of modularity to account for the non-deterministic character of the generalized
Louvain algorithm. To remove the effect of the number of slices, we use the edge
swapping randomization model (Karsai et al. 2011; Gauvin et al. 2018) that selects
two edges (i, j) and (u, v) at random and swaps two randomly selected ends of the
two edges. Some practical decisions have to be made to perform the randomization.
First, we have to avoid swaps producing existing edges so that the total number of
edges does not change. We must also do the shuffling slice by slice to preserve the
intra-slice degree distributions—that is, in this context, we do not use the exact same
reshuffling as described in (Karsai et al. 2011; Gauvin et al. 2018). It should also be
noted that using this process, we cannot break a single clique contained in a single
slice.

In summary, the method can be described as follows:

1. For i from 1 to n:

a. Slice the temporal network into i slices.
b. Run modularity-based multilayer community detection multiple times and

computemodularity.We callmo(i) themaximummodularity found for i slices.
c. Apply edge randomization in each slice.
d. Run community detection multiple times and compute modularity. We call

mr (i) the maximum modularity found for i slices after randomization.
e. Compute the corrected modularity mn(i) = mo(i) − mr (i).

2. Return i maximizing mn(i).

21.4 Results

In this section, we present three main results. First, we support our assumption that
part of the growth in modularity when the number of slices increases is a direct
consequence of the increased number of slices and not necessarily of the presence
of better clusters. Then, we use synthetic datasets where the best number of slices is
known in advance to test if our approach can correctly identify these values. Finally,
we execute our method on real networks for which we do not know the best number
of slices.

21.4.1 Expected Modularity Increment in Sequentially
Duplicated Networks

In this section,we analyze the behavior ofmodularitywhenwe start froma single slice
with clear clusters and add additional identical slices. In this dataset, the assignment
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of vertices (i, j, . . . ) into clusters does not change with the number of slices: the
clusters are replicated on all slices.

We first do this analytically. We start from a single slice, where modularity is
computed as in Eq.21.1. For convenience, let us call A = ∑

i, j (Ai j )δ(γiγ j ) and

K = ∑
i, j (

ki k j

2m )δ(γiγ j ). With this substitution, we can write the modularity of one
slice as:

A − K
2m

(21.3)

If we duplicate the network, that is, we add one slice identical to the original
network and replicate the same cluster assignments on the two slices, the expected
modularity includes the modularity on the two slices (each equal to the modularity
above) plus one interlayer link for each vertex (as by definition each vertex belongs
to the same cluster in both slices):

(A − K )+ (A − K )+ 2a
2(a + m + m)

Generalizing to S slices, we obtain:

S(A − K )+ 2a(S − 1)
2(a(S − 1)+ Sm)

This result is tested in Fig. 21.4, wherewe showhow the theoreticalmodel approx-
imates well the empirical one.

21.4.2 Synthetic Data Validation

21.4.2.1 Hidden Cliques

Our first synthetic data consists of two cliques separated by random noise (20%
density), with this pattern repeated five times. The network is shown in Fig.21.5a,
split into different numbers of slices. When we only have one slice, the combination
of the noise present throughout the existence of the network hides the clusters. When
we use five slices (Fig. 21.5b), the cliques are easily visible in all slices. In time, the
cliques disappear because they are spread across several less dense slices.

With this dataset, we know that the best clusters appear when we have five slices.
Figure21.6a shows the original modularity, the randomized modularity, and our cor-
rected modularity. While the first two increase when the number of slices increases,
the corrected modularity peaks at five slices. Figure21.6b shows the result for the
same experiment but with ten repetitions of the clique-noise pattern instead of five.
The method correctly finds a peak at ten slices.
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Fig. 21.4 Expected modularity of a replicated network: the value increases with the number of
slices, following a predictable pattern

Figure21.6b also shows the normalized mutual information (NMI) between the
ground truth clusters and the clusters found by the algorithm, for different numbers
of slices. A higher value of NMI corresponds to more similar clusterings. We notice
how the number of slices identified by our approach corresponds to the highest NMI.
However, the generalized Louvain algorithm would still be able to reach the same
NMI with other numbers of slices (up to 15, respectively 25).

Figure21.7 shows a different type of synthetic temporal networkwherefive groups
of vertices are active at different times. An example of this type of behavior can be
a museum, where some organized groups enter the exhibition at different times and
go through it together, being active for the whole duration of their visit and then
disappearing from the data.

In this case, the best number of slices is the one where all the groups are collected
together, that is, only one slice. This corresponds to the highest value of corrected
modularity (Fig. 21.7d). Notice, however, that the generalized Louvain algorithm
would identify the same clusters independently of the number of slices.
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(a) (b) (c)

Fig. 21.5 A temporal network with two cliques separated by random noise is repeated five times:
For a single slice (a), the aggregated noise hides the cliques. Five slices (b) reveal the cliques as
the number of slices separates the five repetitions of the network. The cliques disappear for an
increasing number of slices (c) because they are spread across several less dense slices
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Fig. 21.6 A temporal network with two cliques separated by random noise is repeated five and
ten times, respectively: The figures show the modularity of the original network (red), the shuffled
network (green), the correctedmodularity (blue), as well as the normalizedmutual informationNMI
(purple), for five (a) and ten (b) repetitions of the experiment The peaks of the corrected modularity
are at five and ten, respectively

21.4.3 Real Data

Figure21.8 shows the original modularity computed by the generalized Louvain
algorithm (black), the modularity of the randomized network (red), and the corrected
modularity (blue) for the four real datasets in Fig. 21.3. The correctedmodularity fol-
lows similar trends for the Hypertext, Haggle, and School datasets, with a maximum
reached after a few slices have been obtained, while for the Infect dataset, we see a
maximum for the original, unsliced data.
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Fig. 21.7 Five cliques are active at different times: The five cliques are easily identified with one
slice (a), where also the correctedmodularity has its maximum. The normalizedmutual information
reveals, however, that the clusters are correctly identified independent of the number of slices—five
in (b) and ten in (c). Panel (d) shows the modularity

21.5 Discussion

We have presented an approach to select the number of slices to discover commu-
nities in temporal networks using generalized modularity. Based on the observation
that the value of generalized modularity tends to increase when we increase the
number of slices, even when no additional information is generated, the proposed
approach corrects the modularity. In this chapter, we use edge reshuffling to perform
the correction.
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Fig. 21.8 Examples from real-world data sets. Hypertext (a), Haggle (b), School (c), Infect (d).
original modularity (black) model reshuffling (red), and corrected modularity (blue)

While the proposed method looks for the highest value of corrected modularity
to select the best number of slices, this does not mean that lower values of corrected
modularity would necessarily correspond to worse clusterings. In fact, even when the
proposed method identifies the number of slices corresponding to the best clustering,
our experiments show that there is often a range of values where the communities
are clear enough to be identified by the clustering algorithm.

This chapter does not focus on efficient computation. In the experiments, we use a
brute-force search to find the number of slices maximizing the corrected modularity,
trying all values from 1 to an arbitrary number.While this works for small or medium
networks, recomputing generalized Louvain hundreds of times may not be feasible
for larger networks, so a smarter exploration of the solution spacewould be necessary.

While this chapter focuses on modularity, there are intrinsic limitations of modu-
larity that should be considered when it is used to identify communities in temporal
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Fig. 21.9 An example of
recurrent communities that is
not captured well by
multi-slice modularity

networks. A first issue is that generalized Louvain tends to identify pillar clusters so
that a vertex that belongs to the same cluster in many layers may get clustered with
the same nodes also in layers where they are not well connected. More generally, in
a temporal network, we may expect some vertices to belong to some clusters only
at some times, while generalized Louvain would force all vertices to belong to a
cluster in each slice. Recurrent clusters (appearing and disappearing) are also not
supported well by the ordered version of generalized Louvain. Figure21.9 shows a
slicing where clear communities are visible, but that does not correspond to a max-
imum value of corrected modularity. This is expected, as modularity tries to cluster
all the vertices and looks for inter-layer consistency.

As a final consideration, in this chapter,we assume that the twomodularity compo-
nents, one that increaseswith better clusterings and one that increases just because the
data size increase, are additive. The assumption seems to hold for identifying clearly
planted clusters in synthetic data but also gives unstable results for low numbers of
slices in a case where we repeat the same network in every slice (see Fig.21.10); in

Fig. 21.10 The same
network is replicated on all
the slices: A scenario where
the corrected modularity is
expected to be constant but
shows unexpected behavior
for small numbers of slices
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this case, we could expect corrected modularity not to show any difference between
different numbers of slices.
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