Chapter 8 M)
Metrics for Temporal Text Networks Creetic

Davide Vega and Matteo Magnani

Abstract Human communication, either online or offline, is characterized by when
information is shared from one actor to the other and by what specific information
is exchanged. Using text as a way to represent the exchanged information, we can
represent human communication systems with a temporal text network model where
actors and messages coexist in a dynamic multilayer network. In this model, actors
and messages are represented in separate layers, connected by inter-layer tempo-
ral edges representing the communication acts—who and when communicate what
information. In this chapter we revisit some measures specifically developed for tem-
poral networks, and extend them to the case of temporal text networks. In particular,
we focus on defining measures relevant for the analysis of information propagation,
including the concepts of walk, path, temporal precedence and path distance mea-
sures. We conclude by discussing how to use the proposed measures in practice by
conducting a comparative analysis in a sample communication network based on
Twitter mentions.

Keywords Human communication - Communication system * Information *
Temporal text network - Multilayer - Text - Distance measure - Precedence * Path

8.1 Introduction

The concept of communication is fundamental to study modern and contemporary
societies (Luhmann 1995), and it is particularly important in social network analysis:
many of the existing network-based models of social systems directly or indirectly
represent communication processes. For example, if we focus on temporal social
networks, empirical studies include conversations on social media (Magnani et al.
2012; Wang et al. 2021; Mathew et al. 2019), mobile telephone calls (Karsai et al.
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2011), and face-to-face interactions (Stehlé et al. 2011; Sapiezynski et al. 2019).
Even when we consider static models of social networks, such as friendship graphs
without any associated temporal information, many of the metrics used to analyze
them are still based on the assumption that some information is shared through the
network. For example, we can measure the ability of actors or groups of actors to
efficiently spread information (closeness, diameter, Page-Rank centrality), or we can
identify actors with the ability to influence existing information flows (betweenness
centrality). In summary, the most typical application of social network models and
in particular temporal social networks is to study systems of communication.

Despite the central role of information in communication systems, the information
exchanged through the social ties has often been neglected in network analysis. The
most popular methods for the analysis of social networks are defined on simple graph
models, only including actors and their relationships, and hence temporal network
analysis methods often only rely on the additional availability of time annotations.
Studies on information diffusion processes often acknowledge the importance of
considering the actors propagating the information, the times of the propagation,
and the content. In practice, however, the content (e.g., text posted online) is used
only to define how actors are connected with each other based on, for example, the
order of links between blog posts (Leskovec et al. 2007) and private messaging (Cae-
tano et al. 2019), who re-shared the same content in social media (Gomez Rodriguez
et al. 2010) or how actors interact with messages shared across multiple social net-
works (Salehi et al. 2015; Roth and Cointet 2010a). Tamine et al. (2016) use the
concept of polyadic conversation, a model where chains of Twitter user interactions
(replies, mentions and retweets) during a time interval are first grouped into conver-
sation trees, and then aggregated into a static weighted graph of interactions between
authors. This type of graph aggregation has recurrently appeared in the literature
of network modeling (Aragén et al. 2017) and information retrieval (Magnani et al.
2012), but there is no consensus on either what is the best method to build such
model (e.g., how to compute the length of a conversation in terms of time and/or
tree’s depth) or how the textual content affects the grouping of actors. These are
important limitations, because studying communication networks without consider-
ing what 1s communicated can only allow a partial understanding of the underlying
social system (Deri et al. 2018).

This chapter is based on a model for temporal text networks designed to enable a
more accurate representation of human communication (Vega and Magnani 2018).
Temporal text networks describe communication events among actors, including the
actors exchanging information, the textual representation of this information and the
times when the communication happens. While this model is still limited to textual
information, text is a very common way to communicate (for example by email, or
via social media posts) and can also be used to represent other forms of expression,
for instance oral communication that can be translated to text either manually or
semi-automatically through speech-to-text algorithms, and also images, that can be
turned into a set of keywords describing them (Vadicamo et al. 2017; Magnani and
Segerberg 2021).
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While mathematically temporal text networks can be seen as extensions of tem-
poral networks, which are themselves extensions of simple networks, there are two
important differences that require the introduction of specific analysis methods. The
most intuitive difference is of course the presence of text. An additional and more
subtle difference lies in the semantics of the temporal annotations.

In the literature on temporal social networks the time on edges is typically used
to indicate when an edge exists, e.g., that during that time the two actors are in
contact and can exchange information. An implicit assumption in existing works is
that information can be exchanged at any time when an edge is active, and that the
exchange of information is instantaneous.

When we explicitly model communication networks, we should make a difference
between edges representing the possibility of communicating and edges representing
the actual production and consumption of information. In many cases the first type
of edges exist between all actors; for example, we can always send an email to an
existing email address. Therefore, in this chapter we focus on edges representing
communication acts, that is, the actual exchange of information. These acts may
have a non-negligible duration, therefore the time annotations in a temporal text
network indicate when the transmission of a (text) message starts and when it finishes.
Examples where this is important are messages exchanged through networks where
the communication channel has a physical delay, and asynchronous communication
such as by email and via social media, where the text is sent at some time but in
general only received at a later time.

This different semantics of the temporal edges in temporal networks and in tem-
poral text networks requires the re-definition of some central concepts, such as time-
consistent paths, which in turn leads to the definition of new specific metrics.

Finally, it is worth mentioning that Natural Language Processing (NLP) meth-
ods such as sentiment analysis (O’Connor et al. 2023; Dodds and Danforth 2010)
have been used in the past to study the evolution of tweets, songs, blogs, presiden-
tial speeches without requiring information about the underlying communication
structure (who exchanges these data sources and how), using only data from time-
annotated documents and time series information (Lavrenko et al. 2000). The tempo-
ral text network model does not only allow researchers to use NLP methods during
the analysis, but it provides specific metrics to combine them with other measures
from temporal networks.

This chapter introduces the concept of path in temporal text networks and various
metrics to characterize them. In Sect. 8.2 we introduce the temporal text network
model to encode communication networks. In Sect. 8.3 we introduce the concepts
of walk and path in temporal text networks, and in Sect. 8.4 we define alternative
ways of summarizing a path, based either on the times when the communication acts
happen or on the text exchanged through a path. Finally, in Sect.8.5 we conclude
with an empirical comparison of some of the measures introduced in this chapter in
a sample network formed by the Twitter interactions between Swedish politicians.
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8.2 Representing Temporal Text Networks

From a mathematical point of view, a temporal text network (Vega and Magnani
2018) can be represented as a triple (G, x, t) where G = (A, M, E) is a directed
bipartite graph representing the communication network, x : M — X is a mapping
between the messages in M and a set of sequences of characters (text) in X and 7 :
E — T represents the time associated to each edge, where T is an ordered set of time
annotations. Edge directionality indicates the flow of the communication: (a;, my) €
E indicates that actor a; has produced text m;, while (my, a;) € E indicates that actor
a is the recipient of message my.. Actors with out-degree larger than 0 are information
producers, actors with in-degree greater than 0 are information consumers, and actors
with both positive in- and out-degrees are information prosumers. For the sake of
readability, we will sometimes use a compact notation, e.g., (a, m, t, x) to indicate
an edge (a, m) € E where t(a, m) =t and x(m) = x.

Figure 8.1 describes a working example we will use during the remainder of this
chapter, representing a temporal text network with |A| = 8 actors, | M| = 6 messages
and | E| = 15 edges. It is important to observe that, in most cases, the edges to/from
a message have different time attributes; the only restriction imposed by the model
is that (a;, m), (m,a;) € E = t(a;,m) < t(m, a;). In other words, a message can
be consumed at different times by each actor (e.g., different social media users can
check their notifications at different times), but can never be received before it has
been generated (e.g., a user cannot access information that has not been shared yet).

This simple model can be used to differentiate between so-called unicast (mes-
sages m, and m3 in the figure) and multicast (messages m, m4 and ms) communica-
tion. The model can also be used to represent a variety of communication platforms
such as email and Twitter mention networks, and can be easily extended adding edges
between actors or between messages to represent additional relationships such as a
follower/followee network. Unless we explicitly mention it, in the remainder of the
chapter we will ignore these extensions.

A similar model to represent temporal interactions is the contact sequence (Holme
and Saramiki 2012; Gauvin et al. 2013) model, which expresses temporal networks as

Fig. 8.1 A temporal text network model. Circles represent actors, squares represent messages
and the edges between them represent the production and reception of the messages by the actors.
Edges are also annotated with a time attribute #; € T
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a set of directed edges (called contacts) during a finite span of time. While this model
has been successfully used to study spreading processes of information (Lambiotte
et al. 2013; Cheng et al. 2016; Caetano et al. 2019) or the structural evolution of
social networks (Paranjape et al. 2017; Viard et al. 2016; Kim and Diesner 2017),
the model ignores the role of the content of the messages.

A natural alternative to represent time in networks is to use a sequence of time-
annotated graphs, forming a multilayer network (Dickison et al. 2016; Kiveli et al.
2014). In time-sliced models (Mucha and Porter 2010), for example, each one of the
aggregated networks represents a fixed interval of time, and an edge ¢;; exists in a slice
if at least one contact has been registered between nodes i and j in the corresponding
time interval. The aggregated graphs are sometimes weighted, in which case the edges
have an assigned weight attribute w;; proportional to the number of original edges,
their frequency or another relevant time summarization function. In longitudinal
networks, instead, the relations between the same or similar actors are detected at
different points of time (Snijders 2005, 2014). From the modeling point of view there
is not much difference between the two models, apart from the fact that in time-sliced
networks the time intervals of two adjacent slices are typically contiguous, which is
not necessarily true for longitudinal networks.

8.3 Path-Based Metrics

Metrics for simple networks are based on basic concepts in graph theory, such as
adjacency and incidence, and on counting discrete objects such as edges. Temporal
networks extend simple networks with time. This requires the extension of some
basic concepts in graph theory, and as time is often represented as a real number or
interval, then temporal measures also require some additional simple arithmetical
operations, such as time difference.

Temporal text networks also contain a text attribute. Text is a much more complex
type of data, with a large number of possible operations. For example, the comparison
of two texts can be done using different models (edit distance, word overlapping,
vector representation, etc.), applying different preprocessing operators (stemming,
stop word removal, dictionary based word replacement) or mapping the text to other
domains (for example sentiments or topics). While these choices are very important
in practice, hard-coding all these details in the metrics would make the model very
complex.

Therefore, as discussed by Vega and Magnani (2018), when dealing with temporal
text networks we assume to have at least one of the following two types of text
functions. The first type is used in a so-called continuous analysis approach, based
on the idea of having different grades of similarity between messages. In this case we
assume to have a distance function d : M x M — [0, o0), indicating how similar
two messages are; if d = 0, the two messages are considered indistinguishable (for
example because they contain the same text), and higher values of d indicate that the
two messages are less similar. Notice that one can then plug specific functions into
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the model based on the text operations described above. An example of a message
distance function is the cosine of the angle between vector representations of the two
texts.

The second type of functions is used in a so-called discrete analysis approach,
where each message is assigned to 0, 1 or more classes. For each class i we have
a function ¢; : M — {0, 1}, which returns 1 if the message belongs to class i, 0
otherwise. One example is a topic modelling function with & topics, where ¢; (m) = 1
if m belongs to topic i. Notice that starting from a discretization function we can also
define a text distance function, for example based on how many common topics are
shared between the two input messages.

8.3.1 Incidence and Adjacency

In digraphs two vertices are adjacent if there is an edge between them, and two edges
are adjacent if the tail of the first is the head of the second. In temporal text networks
two vertices are adjacent at time t if there is an edge between them at that time.
The concept of adjacency has also been extended to edges (also known as events or
contacts): an edge entering a vertex is adjacent to an edge leaving the same vertex
at a later time. This enables the definition of Az-adjacency between edges, which
is satisfied when they are adjacent and the time between them is less or equal than
At. Note that this terminology is not completely consistent with the one in digraphs,
where only vertices can be adjacent.

Temporal text networks differ from the previous cases in two regards. First, we do
not need to extend the concept of adjacency to edges: we have two types of vertices
(actors and messages), so for example the concept of adjacency between edges in
temporal networks corresponds to adjacency between messages. This also means
that we can retain the concept of incident edges from the theory of digraphs. Second,
the idea of filtering those pairs of vertices that are close enough in time can also
be extended to actors. In summary, all the concepts discussed above can be reduced
to the following definitions, where v;, v; can be either actors or messages, with uy
being a node of the other type.

Definition 1 (Edge incidence) Let ey = (v;, ux, t1) and ex = (ug, vj, 1) be two
edges in a temporal text network. We say that e is incident to e; if t; < #,.

Definition 2 (Adjacency) Let e; = (v;, ux, t1) and e, = (ug, vj, 1) be two edges
in a temporal text network. Then:

1. v; is adjacent to uy at time ¢;.
2. v; is At-temporally adjacent to v; if 1, — 11 < At.
3. v; is Ax-textually adjacent to v; if v;, v; € M and d(v;, v;) < Ax.

Notice that the definition of incidence and adjacency hold independently of the
type of vertices (v;, ux and v;) involved. If v;, v; € A are actors, then their temporal
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adjacency is defined by the delay between the production and consumption of the
message u; € M. We call an edge from an actor a to a message m a producer edge
(ep), while an edge from a message m to an actor a is called a consumer edge (e.).
If v;, v; € M are messages, then their temporal adjacency is defined by the delay
between when the intermediate actor consumes (e.g., receives) the first message and
the time when it produces (e.g., sends) the second. For example, the producer edge
es = (a;, my) in Fig. 8.1 is incident to the consumer edge ey = (my4, a,), therefore
actor qa; is At-adjacent to actor a, for all At > 19 — 14.

8.3.2 Walks and Paths

Definition 3 (Walk) A walk in a temporal text network (also called a temporal walk)
is a sequence of edges e', €2, ..., ¢/ where ¢’ is incident to ¢/*! for all i from 1 to
[ —1.

In the following we will write a € w to indicate that a vertex (actor or message)
is present in walk w.

Notice that the definition above does not constrain the starting and ending vertices
of a path to be actors or messages. However, we will often be interested in walks
starting from an actor, because every message has a single producer in the model
used in this chapter.

Definition 4 (Path) A path in a temporal text network (also called a temporal path)
is a walk where no vertex (message or actor) is traversed twice.

Each path establishes a precedence relation between actors indicating that the
network allows a flow of information between them. Similarly, we have a precedence
relation between messages indicating that the two messages can be part of the same
flow of information.

Definition 5 (7emporal precedence) An actor a; temporally precedes another actor
a; if there is a path from a; to a ;. A message m; temporally precedes another message
m ; if there is a path from m; tom .

Figure 8.2 represents the temporal text network of Fig. 8.1 as a temporal sequence
of edges between actors and messages. In this example, w; = [eq, €7, eg, e9] and
wy = [ea, €10, €11, €12, €14] are two walks of 4 and 5 edges.1 The second walk is also
a path, starting at an actor and ending in a message mg, but the first walk is not a path
because the last edge eg = (m, a;, t9) visits for a second time the actor ;. Finally,
notice that in this example a; precedes actor ay in path p; = [e4, e7] and vice-versa
in path p, = [eg, e9], while m3 precedes mg but not otherwise.

In some cases we may want to consider only those paths with a limited delay
and with a limited textual difference between adjacent messages. We can thus use

! To simplify the notation, in this chapter we are assuming thati < j = t; < ¢ -
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Fig. 8.2 Temporal text network represented as a sequence of edges. The horizontal lines repre-
sent the actors (gray color) and messages (green color) and vertical lines represent the transmission
or consumption of a message. The shaded lines indicate all existing paths beginning at actor a; at
the exact time ¢ = 4

the definitions of A-adjacency introduced above to select specific paths where suf-
ficiently similar messages are exchanged often enough with respect to some user-
defined thresholds.

8.4 Path Lengths

From now on we will focus on paths starting at an actor and ending at an actor.
While a path can also start or end at a message, paths from and to actors are the
ones providing the most accurate description of an information flow, because for
every message there must always be an actor producing it, and messages that are
not consumed by anyone (as message mg in our example) do not correspond to any
exchange of information.
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The length of a path in a temporal text network can be defined based on topology,
on time, and on text.

The topological length is an unambiguous measure in simple and temporal net-
works, which are only made of vertices and edges. In a temporal text network a path
contains actors, edges and messages, and the definition of length that is compatible
with the one used in temporal networks corresponds to the number of messages in
the path. This is because when a temporal network is translated into a temporal text
network every edge is transformed into a message.

The temporal length, instead, defines the overall duration of the communication
and is computed as the difference between the time of the last consumer edge and
the time of the first producer edge in the path.

The topological and temporal length measures we have just described can be
used to characterize the several paths that traverse our graph. In Fig.8.2 we have
highlighted all the existing paths starting at actor g; at exactly t = 4, including those
ending in a message. For example if we compare the path p; = [eq4, €j0, €11, €13] with
the path p, = [e4, €10, €11, €15] we can see that both have the same topological length
of 2 messages. However, while both paths start at the same time e4 = (a;, ma, 14),
the time of the last consumer edge is different and so their temporal length: 7 (e;3) =
t(ms, ap, tp) < t(es) = t(ms, ap, f15).

Interestingly, in temporal text networks the temporal length of a path measures
two different types of delays. On the one hand it measures the transmission time (5t)
as the difference between the time of the consumer edge 7 (e.) and the time when the
content has been produced 7 (e,). On the other hand, it indicates the idle time () of
the actors involved in the communication between two consecutive edges.

Definition 6 (Transmission time) Lete; = (a;, m, t;) and e, = (m, a;, t;) two inci-
dent edges, with m € M. Then the quantity #, — #; is called transmission time.

Definition 7 (/dle time) Let e; = (m;,a,t;) and e; = (a,mj, t,) two incident
edges, with a € A. Then the quantity #, — #; is called idle time.

Once one has defined transmission and idle times, one can also compute the sum
of all transmission times in a path, the sum of all idle times in a path, and the ratio
between these values and the temporal length of the path. Back to our previous
example, we can observe that the total transmission time of the messages in the first
path §; = (tg — t4) + (tj0 — t9) = 6 is three units smaller than in the second path
81 = (tg — t4) + (t13 — t9) = 9 while their idle time is the same tp =ty — t9 = 0;
which explains why the first path has a smaller temporal length.

The last type of length concerns the textual content in the path. Every time a
message is exchanged, this increases the temporal length of the corresponding amount
of time. Similarly, every time a new text is included in the path, this increases the
textual information in it.

Definition 8 (7extual length) Given a text distance function, the textual length of a
communication path is defined as the sum of the distances between the texts of all
pairs of adjacent messages in the path.
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This definition quantifies the variations between adjacent messages. At the same
time, it is possible that the texts of the message keep being updated when transmitted
through the path, but never significantly deviate from the original message. In this
case, an alternative definition of length can be used to compute the maximum distance
between any pair of messages.

In the case of discrete text analysis, where each message can belong to some
classes (for example topics), this idea of estimating how homogeneous the text is
across the path can be computed using a classical measure of entropy, for example
the Shannon index:

Definition 9 (Entropy) Letcy, ..., ¢, be text discretization functions mapping text
into one of n classes. Given a path p, we define p;(p) = W, where M, is
14

the number of messages in p. The textual entropy of path p is then defined as:

H(p) =~ pi(p)Inpi(p) (8.1)

i=1

According to this definition, if all messages that are part of a path belong to the
same class (e.g., to the same topic), then the textual entropy will be 0, indicating a
homogeneous path when we look at its text. Higher values of entropy would indicate
that multiple classes (e.g., topics) are included in the path. This information can
be useful in various analysis tasks, including the identification of information flows
(when the same textual content is transferred through the network) or community
detection, where one wants a community to be homogeneous not only with respect
to the topology but also with the exchanged messages.

Once we decide which definition of length to use, this defines what the shortest
paths between any pair of actors are, which implies that we can compute all the
existing network measures based on shortest paths, including closeness centrality,
betweenness centrality, eccentricity, diameter, etc. For the definitions of these metrics
we refer the reader to any basic book on network analysis.

8.5 Empirical Study

In this section, we show an empirical comparison of the measures introduced in
this chapter in a real communication network. Our sample dataset consists of all the
public Twitter mentions (messages including another Twitter @username) written
by Swedish politicians during January, 2019. The period of observation takes place
four months after the Swedish general elections in 2018, and includes the time when
the new government coalition was formed.? Our final network consists of |A| = 886
actors, including 26 politicians (8 information producers and 18 prosumers) and 860

2 We considered only politicians who were either members of the parliament before the elections
or were part of an electoral ballot.
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mentioned users (all of them consumers), |M| = 1, 707 Twitter messages with their
corresponding text and | E| = 4, 882 edges between actors and messages. Modelling
the reception time is more difficult, because many social media platforms like Twitter
do not provide information about when and who consumed a piece of information.
In our experiments we assumed that the consumption time of all messages is the
same as the production time, which is not true in general (e.g., users are not always
connected to all their social media and, even if they are, the tweet might be lost in
the myriad of information provided by the user’s wall).

Figure 8.3 shows, for each one of the 6,773 pairs of actors temporally reachable, a
comparison of their topological and temporal shortest path length. It includes 5,787
(85.4%) paths with only two edges, representing two AO-textually and temporally
adjacent actors who have been in direct communication. The average temporal path
length of the remaining paths increases with the number of hops (topological length)
while its statistical dispersion is reduced, as we usually observe in other types of tem-
poral networks (e.g., contact networks). For example, the 56 pairs of actors connected
through 3 messages (6 hops) have an average communication time (shortest temporal
length) of approximately 14 days. The order of magnitude of these numbers can be
explained by the skewed distribution of roles (producer, consumer and prosumer) of
the actors in the data and the small sample of the original social network.

Another important component to understand communication networks is the spe-
cific content their members intend to share with each other. For example, in a con-
versation within a group of close people the content (text) of the messages will be
probably different between communications, while news spreading processes will
probably have a more similar topic distribution. The consistency of the topics in an
information cascade, therefore, can be a good metric to describe the dynamics of a
complex system.
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Fig. 8.4 Empirical
cumulative distribution
function (ECDF) of the
textual length

Empirical cumulative distribution function (ECDF)

Textual length (entropy)

Using the concepts described in Sect. 8.4, we have first identified the topics of the
messages exchanged in our sample network and then, computed the textual length
using the Shannon index described in Eq. 8.1 to identify the shortest paths of each
pair of temporally reachable actors. While identifying the topics, we have used the
hashtags as proxies, which is a simple and sometimes acceptable solution; but as
we will see, problematic in practice. As we mentioned in the previous section, the
definition of textual length assumes that there is a discretization function mapping the
text into at least one topic. Hence, because many tweets do not contain any hashtag,
their topic assignment is empty.

Figure 8.4 shows the empirical cumulative distribution function (ECDF) of the
textual shortest path in our sample network. In this particular example, only 420
observations of 6,773 were computed, as many paths have an unidentified length,
either because none of the messages have a topic assigned or because they contain
only one message.

We can observe that more than 75% of the textual paths computed have 0 entropy,
indicating that there is one single topic in the messages of the path. A closer look
does not indicate any correlation of these results with the topological or temporal
length of the paths. The minimum textual length paths include, for example, all the
paths with 5 messages (10 hops) and 85.45% of the paths with 4 messages, but less
than 50% of the paths with 3 messages.
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8.6 Final Remarks

In this chapter, we have revisited some of the fundamental graph measures for tem-
poral networks and extended them to be compatible with the temporal text network
model for communication systems. We have shown that using the proposed model
we can directly represent, in a simple but extensible way, all the elements necessary
to study communication (time, text and topology), without requiring complex graph
transformations. While mathematically temporal text networks are not much differ-
ent from time-varying graphs, the semantics of its interactions and the presence of
textual information in the model require the introduction of specific analysis methods.
In particular, in this chapter we have focused on redefining the idea of connectivity
and most of its related measures such as incidence, adjacency, paths and distance,
providing alternative metrics for actors and messages when we found it was relevant
and necessary. Finally, we have shown how the different distance measures can be
used in practice to discover patterns of connectivity.

Temporal text networks can be seen as extensions of simpler network models,
motivated by the need to capture more information that is not easily represented in
the form of simple relationships between entities. This is just one example of a larger
trend in network science, that has been present for a long time in social network
analysis where there is often a clear need to obtain a non-binary understanding of
social relations. Interdonato et al. review different types of features (beyond time
and text) that have been considered in the literature (Interdonato et al. 2019), and
temporal text networks are just one of the many approaches using complex network
concepts to study text data (Oliva et al. 2021). Some of the approaches to study text
using networks focus on the modelling of concepts or topics, that can be related to
the discrete classes computed on temporal text networks to reduce the complexity of
the individual text messages (Taskin et al. 2020; Camilleri and Miah 2021). These
approaches are of particular relevance for temporal text network analysis when the
concepts or topics can be related to actors (St-Ong et al. 2022) and the analysis has
a temporal perspective (Roth and Cointet 2010a).

In Sect.8.5 we have provided a simple empirical application of the presented
measures, with the aim of exemplifying them. In the literature, networks including
text and time have been used to study online political communication (Hanteer et al.
2018), online communities (Ustek-Spilda et al. 2021), and information spreading
(Pereira 2021). While our example is about social media data, which is certainly a
main field of application for temporal text networks, other types of data can also be
modeled, including data from historical archives (Milonia and Mazzamurro 2022)
and biomedical texts (Chai et al. 2020) but also non-textual data, where for example
images can be discretized or compared using computer vision tools such as convo-
lutional neural networks (Magnani and Segerberg 2021).

Each of the concepts and measures described in this chapter only focuses on
some aspects of the data. As an example, a path is defined in a conservative way
with respect to graph theory, not allowing the multiple appearance of the same actor.
However, in some cases it can be useful to consider walks where the same actors
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appear multiple times, as long as they exchange different messages. For example, as
part of a longer discussion between two actors. Similarly, entropy and A-adjacency
only consider respectively consecutive interactions in a path and the unordered set
of all interactions, while in some cases we may be interested just in the difference
between the first and the last message. In summary, these functions should be con-
sidered as a non-exhaustive set of fundamental building blocks, to be extended and
expanded. Beyond their direct application to different analysis tasks, the basic mea-
sures described in this chapter can also be used to redefine other network measures
so that they can capture more information from communication systems. Examples
include centrality measures and community detection algorithms.
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