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Unspoken Assumptions in Multi-
layer Modularity maximization
Obaida Hanteer1 & Matteo Magnani2

A principled approach to recover communities in social networks is to find a clustering of the network 
nodes into modules (i.e groups of nodes) for which the modularity over the network is maximal. This 
guarantees partitioning the network nodes into sparsely connected groups of densely connected 
nodes. A popular extension of modularity has been proposed in the literature so it applies to multi-layer 
networks, that is, networks that model different types/aspects of interactions among a set of actors. 
In this extension, a new parameter, the coupling strength ω, has been introduced to couple different 
copies (i.e nodes) of the same actor with specific weights across different layers. This allows two nodes 
that refer to the same actor to reward the modularity score with an amount proportional to ω when 
they appear in the same community. While this extension seems to provide an effective tool to detect 
communities in multi-layer networks, it is not always clear what kind of communities maximising 
the generalised modularity can identify in multi-layer networks and whether these communities are 
inclusive to all possible community structures possible to exist in multi-layer networks. In addition, it 
has not been thoroughly investigated yet how to interpret ω in real-world scenarios, and whether a 
proper tuning of ω, if exists, is enough to guarantee an accurate recoverability for different types of 
multi-layer community structures. In this article, we report the different ways used in the literature 
to tune ω. We analyse different community structures that can be recovered by maximising the 
generalised modularity in relation to ω. We propose different models for multi-layer communities in 
multiplex and time-dependent networks and test if they are recoverable by modularity-maximization 
community detection methods under any assignment of ω. Our main finding is that only few simple 
models of multi-layer communities in multiplex and time-dependent networks are recoverable by 
modularity maximisation methods while more complex models are not accurately recoverable under 
any assignment of ω.

Community detection is one of the core tasks in the analysis of complex networks. It involves partitioning the 
network into groups of nodes, also known as communities, partitions, cohesive groups or clusters. The impor-
tance of this task comes from its ability to break large networks into smaller building blocks so it becomes easier 
to understand the structure of the network and the role played by each node. Applications of community detec-
tion algorithms are ubiquitous, including social media group detection1, thematic community detection2, 
second-order flow analysis in human mobility3, and topic detection in information networks4. A community 
detection solution is usually represented as a clustering  where  = …C C C{ , , , }k1 2 , and C1, C2, Ck are disjoint or 
non-disjoint groups of nodes.

Although there is no agreed-upon definition for communities in networks, it is widely accepted to consider a 
community, loosely speaking, the group of nodes that are more densely connected with each other than with the 
rest of the network5. This definition is aligned with the quality function modularity6,7, which is a function f () 
that produces values in the range [−1, 1] and for a given clustering  over a network, it measures the extent to 
which the network nodes are more densely connected within the communities …C C C{ , , , }k1 2  ∈  than across 
these communities. While modularity was firstly proposed as a quality measure to evaluate the accuracy of com-
munity detection methods at the time6, it gave birth to a new class of community detection methods that inter-
preted the community detection problem into finding a clustering with the maximal modularity over the 
network.

In response to the advances on complex network analysis, the multi-layer network model has been proposed 
as an effective tool to consider different types and/or different time-windows of interactions in a given system8,9. 
The intuition behind such generalisation is that interactions among a set of actors do not happen in isolation. 
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Instead, they inherit certain dependencies among each other such that one might cause the other one, or one 
can be used as predictor for the other one. For example, if two people are friends on Facebook, the probability of 
having those two connected via other means of communication (i.e., Twitter, Whatsapp, etc) is much higher than 
if they were not connected via any communication mean. Hence, studying these interactions separately without 
accounting for any dependencies among them might yield into misleading or incomplete findings.

Two special applications of the multi-layer model that received a great deal of attention in the literature are 
multiplex networks – that is, networks that model different types of relationships among a set of actors10, and 
time-dependent (or temporal) networks – that is, networks in which the interactions among actors change over 
time11. When the multi-layer model is used to model the former, layers correspond to different types of rela-
tionships and are thus categorical, while in the latter, layers represent different time-points of a relationship, and 
thus are ordinal. Multiplex networks have been used in a variety of different applications including, to mention 
a few, ecological networks (which model different types of interactions among species)12, and social networks 
(where different layers can be used to model different types of interactions provided by a social media platform 
or different relationships across different social media platforms)13. Temporal networks have been used to model 
brain network dynamics (where layers capture the interaction among different areas in the brain over time)14, and 
citation networks (where layers refer to different time points in which the citation happened)15. Figure 1 shows a 
typical layered representation of a multiplex network where each of the layers corresponds to a different type of 
interaction, and nodes in different layers can be associated to the same actor (the same person for example). The 
same figure can also be seen as a time-dependent network if layers were to refer to time-windows of an interaction 
instead. Here, we adopt the term actor from the field of social network analysis, where multiplex networks and 
time-dependent networks have been first applied, and the term layer from recent generalisations of these models8. 
We also refer to networks that model a single relationship among a set of actors as single-layer networks.

In spite of the plethora of methods developed for detecting communities in multi-layer networks, there is 
very little work on proposing a definition for multi-layer communities like community definitions used with 
single-layer networks. For example, it is common to accept the conceptualisation of communities based on the 
relative frequency of edges within and across the communities in single-layer networks, but no extension of this 
definition is provided in the literature for multi-layer networks. This can be due to two reasons: First, multi-layer 
community discovery as a tool emerged as a response to the generalisation of graphs into multi-layer graphs, and 
not to the generalisation of communities into multi-layer communities. Second, most multi-layer community 
detection methods are mathematical extensions of single-layer community discovery methods, which made it 
possible to provide such methods without having to investigate a precise extension of their original conceptu-
alisations. From a structural perspective, recent work16 argues that there are two primary differences between a 
single-layer community and a multi-layer one. First, a multi-layer community can expand over multiple layers. 
Second, edges of a multi-layer community in one layer might depend on the connectivity patterns in another 
layer. For example, in a multiplex network that models different Twitter interactions among a set of users (i.e., 
following and retweeting each represented as a layer in a 2-layer multiplex network), it might be the case that the 
re-tweet edges among a set of actors are largely dependent on whether these actors follow each other or not, which 
might explain the existence of multi-layer communities that expand over the two layers.

Figure 1.  A schematic network with two types of interactions represented by Layer 1 and Layer 2 among 15 
actors. The two nodes existing in both layers and representing the same actor (e.g. the same person) are linked 
by a dotted line.
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Undoubtedly, the generalisation proposed by the multi-layer framework has introduced new challenges to 
the community detection problem. While some researchers worked on that by tailoring new community detec-
tion methods for multi-layer networks17, there has been more tendency to extend some of the already existent 
methods used with single-layer networks like collapsing the multiple layers into a single-layer network and then 
use any of the single-layer community detection methods18, extended label propagation19 and extended clique 
percolation20 just to mention few.

A popular extension from single-layer to multi-layer is the extension of the quality function modularity into 
the generalised modularity21. In that extension, the authors introduce a new parameter, the coupling strength ω, to 
the modularity function. The new proposed parameter, ω, assumes that nodes of the same actor in different lay-
ers are coupled via coupling edges and these coupling edges are weighted with an amount equals to ω. With that 
extension, a modularity maximisation method does not only maximise the within-community intra-layer edges 
and minimise the cross-community intra-layer edges, but also maximises the sum of coupling edges weights, 
i.e., nodes that belong to the same actor, within a community given ω. Indeed, with ω being the only multi-layer 
ingredient in the generalised modularity formula, there has been few tries in the literature to tune ω such that it 
reflects some of the inter-layer information across different layers (i.e., closeness between layers, common neigh-
bour across layers, etc.). It is not clear, however, how these different interpretations affect multi-layer community 
detection using modularity maximisation and whether the modularity function responds to these interpretations 
by providing clusterings that support the intuition behind them. For example, the intuition behind tuning ω 
such that it reflects the percentage of common neighbours among nodes in different layers is that it makes more 
sense for multi-layer communities to group nodes of the same actor in one community only if they have similar 
neighbourhoods across the layers22. The question is whether modularity responds to that tuning by clustering the 
network nodes into communities that respect that intuition.

We claim that methods that maximise the generalised modularity in multi-layer networks inherited their 
popularity and success from the modularity maximisation methods applied to single-layer networks before, yet 
the communities identified by these methods are not thoughtfully investigated enough. For example, Fig. 2 illus-
trates multi-layer communities that can exist in multi-layer networks as we will discuss later. We ask the question 
whether these different models of multi-layer communities are recoverable by maximising the generalised mod-
ularity under any assignment of ω.

The goal of this article is to analyse the assumptions behind the generalised modularity and the effect of that 
on the possible community structures that can be recovered in multi-layer networks as a result of maximising 
that quality function. To achieve that, we first propose different models for multi-layer communities in multiplex 
and time-dependent networks by hypothesising some real-world scenarios. We then analyse different community 
structures that can be recovered by maximising the generalised modularity in relation to ω. We conclude from 
our experiments that only few simple models of the multi-layer communities we propose are recoverable by 

Figure 2.  Different models of multi-layer communities, illustrated using colors referring to the actors’ 
community memberships across different layers. NS in (b,c) means that the community membership of the 
actors in these layers is not specified in this illustration as it does not expand over multiple layers. (a) Pillar 
communities. (b) Semi-pillar layer-adjacent communities. (c) Semi-pillar non-layer adjacent communities. (d) 
Partially overlapping communities. (e) Hierarchical communities.
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modularity maximisation methods while more complex models are not accurately recoverable under any tuning 
for ω.

The novelty of this article comes in (1) the community models it proposes to model different community 
structures which can exist in multi-layer networks, and (2) the discussion about the limitations of the highly 
popular and extensively referenced methods based on modularity maximisation for recovering communities in 
multi-layer networks. Unless mentioned otherwise, we will refer to the generalised modularity as modularity, and 
to the modularity applicable only on single-layer networks as single-layer modularity.

Our article is structured as follows. We first start by proposing different models for multi-layer communities 
possible to exist in multiplex and time-dependent networks in Section 1. Since understanding the generalised 
modularity requires a very good understanding of single-layer modularity, we first recall the definition of modu-
larity in single-layer networks (Section 2). This is followed by a description of generalised modularity in Section 3. 
We study the effect of ω on the types of multi-layer communities that can be recovered by maximising modularity 
in Section 4. We report the results of our experiments on the recoverability of our proposed community models 
using modularity maximisation in Section 5. We discuss our findings in Section 6, and report the methods used 
for our experiments in Section 7.

Models for Multi-layer Communities in Multiplex and Time-dependent Networks
Despite the variety of existing generative models for multi-layer communities in multi-layer networks16,23–31, they 
focus on a limited amount of structures for multi-layer communities, or produce multi-layer communities that 
are not straightforwardly mappable to real-world scenarios in multi-layer networks. Here we hypothesize some 
real-world scenarios for multi-layer communities and interpret them into different multi-layer community mod-
els. These models can exist in multiplex and time-dependent networks under different conditions. While we do 
not claim that this list of models is exhaustive to all possible communities that can exist in multi-layer networks, 
we claim that they provide a good categorization for different types of multi-layer communities for future work to 
investigate further generalisations. We refer to the nodes of an actor a in different layers with a non-zero degree in 
their layers as the active nodes of a. For a multi-layer community C that expands over multiple layers, we refer to 
the set of nodes of C in a single layer L as the induced nodes of C in L, and to the set of actors resulted by mapping 
each of the induced nodes of C in a layer L to their actors as the induced actors of C in L.

•	 [M1] Pillar communities: We call a multi-layer community C a pillar community if there exists a set of actors 
= ...a a a{ , , }k1 2  such that C is constituted of only the active nodes of all the actors in  in all layers of the 

multi-layer network. Pillar communities result from a very high dependency among actors connectivity pat-
terns on all layers of the network, which results in an aligned grouping of the relevant nodes in each layer.

•	 [M2] Semi-pillar layer-adjacent communities: We call a multi-layer community C a semi-pillar layer-adja-
cent community if there exists a set of actors = ...a a a{ , , }k1 2  such that C is constituted of only the active 
nodes of all the actors in  in a subset of layers of the multi-layer network and these layers are adjacent to 
each other. Semi-pillar layer-adjacent communities usually evolve in time-dependent networks where layers 
refer to specific time-windows. In these networks, a set of actors might engage in the same community for a 
limited time and then disappear or engage in other groups in subsequent time-windows. This might result in 
semi-pillar communities that expand over a subset of the layers that are adjacent to each other.

•	 [M3] Semi-pillar non-layer-adjacent communities: Similar to [M2] except that the layers where the com-
munity expands are not adjacent to each other. These communities might evolve in multiplex networks where 
layers do not necessarily have an order and the layers where the semi-pillar communities expand are not 
adjacent to each other. These communities also might evolve in time-dependent networks if a group of actors 
engage in a community for a couple of consecutive time-windows then disappear or engage in other groups 
in subsequent time-windows, then engage again in the same community.

•	 [M4] Partially overlapping communities: A multi-layer community C that expands over multiple layers is 
partially overlapping if the sets of the induced actors of C in each layer where the community expands par-
tially (but not completely) overlap. These communities evolve in cases when the community membership of 
a set of actors in one layer l1 influences the community membership of only a subset of these actors in another 
layer l2 while the membership of the rest of these actors in l2 does not necessarily depend on their membership 
in l1. Think of an example where the network is a three-layer multiplex network modelling Twitter interac-
tions (following, retweeting and replying) among a set of actors. It might be the case that the community 
membership of a set of actors in the ‘following’ layer influences the community membership of only a subset 
of these actors in the ‘retweet’ or ‘reply’ layers (i.e., user a1 retweets user a2 because they follow each other) 
while the community membership of the rest of these actors on these layers does not really depend on the 
‘following’ layer.

•	 [M5] Hierarchical communities: A multi-layer community C that expands over multiple layers is hierarchi-
cal if there is a hierarchy among the sets of the induced actors of C in the layers where it expands. A hierarchi-
cal community evolves when the grouping of a set of actors in a layer L1 still depends on the community 
membership of these actors in another layer L2 but additional non-layer specific dependencies might result in 
different divisions of this grouping across the layers which breaks the perfect cross-layer group alignment that 
happens in the pillar model. Think of the 3-layer multiplex modelling Twitter interactions mentioned above. 
A grouping of a set of actors in the retweeting’ layer might still depend on whether they follow each other or 
not (i.e., user a1 retweets user a2 only if they follow each other), but some other user-specific properties (polit-
ical affiliation for example) might result in multiple divisions of their groupings across the two layers.

Figure 2 provides an illustration for the different multi-layer community models defined above.
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Modularity in Single-layer Networks
As firstly proposed by6,7, the modularity of a clustering  over a single-layer network characterised by an adja-
cency matrix A, where A i j( , ) is 1 if there is an edge between nodes i and j and zero otherwise, can be written as:

∑ ∑= 
 − 


∈ ∈C
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E
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2 (1)C i j C

i j i j
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where E  is the number of edges in the network. The summation is performed only over pairs of nodes that belong 
to the same community C ∈ . P i j( , ) is the probability of having an edge between nodes i and j in a null model.

The intuition behind modularity is to measure the extent to which the distribution of edges in a network is far 
from what one would expect shall the edges be distributed in a community-less manner. It can be seen as a nor-
malised distance between a network N  that has a specific edge distribution and an equivalent network, usually 
referred to as the null model, where edges are distributed randomly. Two common choices for the null model are: 
the uniform random model, where the probability of having an edge among any pair of nodes in the network is 
fixed, or the non-uniform random model, where the probability of having an edge among two nodes depends on 
their degrees (also called a null model with preferential attachment dynamic).

Modularity assumes that nodes within a community tend to interact more densely with each other than with 
the rest of the network. Hence, the quality of a community, from a modularity perspective, is in the percentage of 
within-community edges out of all edges incident to nodes of that community. With that being said, we stress out 
the fact that modularity is not a property of the network, but rather a property of a clustering over the network. It 
is common, however, to describe a network as modular and that is to refer to the existence of a significantly mod-
ular clustering over that network. The modularity of a clustering  in a network can be translated into calculating 
the normalised sum of the network edges contributions to . While iterating through network edges, some edges 
come as a surprise (they exist in the network, but not highly probable to appear in the null model), and others are 
expected (highly probable in the null model). Surprising edges contribute more to the final score when they hap-
pen to be within a community. Equation 1 therefore guarantees:

•	 [P1] Rewarding existent edges within communities. Each edge connecting two nodes i and j in a community 
Cx ∈  contributes positively to the total sum with an amount equal to the difference P(1 )i j,− . Clearly, edges 
that come as a surprise, i.e., are not expected in the null model and hence result in a very low value of Pi j, , 
contribute more to the final modularity than the expected ones.

•	 [P2] Punishing non-existent edges within communities. If two nodes i, j happened to be in the same commu-
nity Cx ∈  and they are not directly connected (i.e.,Ai,j = 0), this contributes negatively to the modularity 
score. The negative contribution equals −P( )i j, . Meaning that highly expected edges contribute more nega-
tively when they are absent than the lowly expected ones.

•	 [P3] Punishing existing edges among communities. Even though it is not straightforward to see that in the 
equation, clusterings with less cross-community edges score higher modularity than those with more 
cross-community edges. The reason is that modularity counts only the contribution of edges lying within 
communities. The existence of edges among two communities will result in a larger number of edges in the 
network (larger E2  in the equation) and zero contribution to the modularity score. This will result in a lower 
modularity than if edges did not exist across communities.

•	 [P4] Rewarding non-existing edges among communities. Following the same reasoning discussed in P3, 
non-existent edges among communities means smaller E  which results in a higher modularity.

Figure 3 illustrates the effect of within-community and cross-community edges on the modularity score.

From Single-layer Modularity to Generalised Modularity
A generalisation of modularity has been proposed for multi-layer networks21. In this generalisation, the authors 
introduce a new parameter ω, also called the coupling strength, which is a weight assigned to the coupling edges 
connecting nodes of an actor across different layers. On the layer level, this parameter has been interpreted as the 
closeness among different layers32. On the actor level, it has been claimed that this parameter should reflect infor-
mation about the extent to which an actor tends to have the same behaviour across layers (high ω) or a different 
behaviour in different layers (low ω)22. With ω, the modularity score does not only reward existent 
within-community intra-layer edges and absent cross-community intra-layer edges, and penalise the absent 
within-community intra-layer edges and existent cross-community intra-layer edges in each layer, but also 
rewards the coupling edges (i.e., inter-layer edges) within communities with an amount proportional to ω. This 
means that if two nodes nix, niy which refer to the same actor i, and hence are coupled, happen to appear in the 
same community, this contributes to the multi-layer modularity score with an amount proportional to ωxy, that is 
the coupling strength assigned to the coupling edge between nix, niy. With that being said, the result of maximising 
modularity in multi-layer networks is not necessarily a clustering that groups all the nodes of an actor in one 
community. There are two forces that drive the partitioning in multi-layer networks using modularity maximisa-
tion. The first tries to keep the node in its optimal single-layer modularity grouping, and the second tries to group 
the node together with other nodes that refer to the same actor. To have an idea about modular structures in 
multi-layer networks according to multi-layer modularity, we report the multi-layer modularity scores (Fig. 4) of 
three different clusterings over a schematic multiplex network constituted of 3 layers and 15 actors and three 
cliques in each layer. The figure shows that even though the three clusterings equally optimise the distribution of 
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intra-layer edges within and across the communities, the generalised modularity favors clusterings that maximise 
the coupling edges within communities in addition (Fig. 4a).

The generalised form of Eq. 1 as proposed by21 can be written as:
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where Ai j
s
,  is the adjacency matrix of layer s, Ws r,  is the coupling matrix that describes inter-layer edges between 

layers s, r1 and Wi j
s r
,
,  therefore equals the value of the coupling strength ωi j,  assigned to the coupling edge connect-

ing nodes i from layer s and j from layer r. i j( , )s rδ  is the Kronecker delta: it equals 1 if nodes is and jr refer to the 
same actor otherwise it equals 0. µ is a normalisation factor and it equals the sum ∑ E2s s  + the total possible 
number of inter-layer edges in the multi-layer network given the coupling type (complete or adjacent) and assum-
ing that all actors are existent in all layers.

The first part of Eq. 2 is the same used to calculate single-layer modularity in Eq. 1. This part alone reaches its 
maximum when nodes in each layer are grouped according to their optimal single-layer modularity. The second 
part of this equation is the added multi-layer ingredient to the modularity score. This part alone is maximised 
when the single-layer optimised groupings are cross-merged across the layers such that all the overlapping 
single-layer groupings appear together in the same multi-layer community. The main difference between the two 
parts is that the first part penalises any other grouping of the nodes that does not respect the optimal single-layer 
modularity grouping, while the second part (assuming ω > 0) does not penalise but only rewards the 
co-existence of the same actor nodes in one community. If the contribution of the second part of Eq. 2 is small 
(i.e., ω is small), optimising modularity will keep nodes in each layer grouped according to their optimal 

Figure 3.  The effect of within-community and cross-community edges on the modularity score of the 
clustering  = {C1, C2, C3} over the single-layer network illustrated in figures (a,b). (a) P1 and P2, (b) P3 and P4.
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single-layer modularities so the first part of Eq. 2 is optimised to its maximum value. At the same time if the con-
tribution added by the second part is big enough (i.e., ω is large), this might not guarantee that nodes in each layer 
will be grouped according to their optimal single-layer modularity as the contribution of the coupling edges 
added to the total sum might become big enough to compensate for the penalties resulted by grouping nodes not 
according to their optimal single-layer modularity.

The type of coupling chosen to connect nodes of the same actor across layers is of great importance for stud-
ying any dynamic in multi-layer networks especially for community detection using modularity maximisation. 
When layers are ordinal, i.e., they have a specific order like in the case of time-dependent networks, coupling 
edges connect each layer s with the successive layer s + 1 and the previous layer s-1. When layers are categorical, 
i.e., they do not follow a specific order like the case of multiplex networks, coupling edges connect all pairs of lay-
ers. We refer to these two types of couplings as adjacent coupling, and complete coupling for time-dependent and 
multiplex networks respectively. Figure 5 illustrates the two different types of coupling strategies and the effect of 
that on a process like community detection in multi-layer networks.

In the paper introducing generalised modularity21, coupling edges were uniformly assigned to values greater 
than or equal to 0. Authors in32 suggested that coupling edges can convey more information and hence, they do 
not have to be uniformly assigned across layers. They can express the closeness among layers and hence closer 
layers are assigned larger values of ω and larger otherwise, and absent couplings among two layers should be 
expressed as couplings with a negative coupling strength (ω < 0). This allows the second part of Eq. 2 to penalise 
the co-existence of two nodes that refer to the same actor if the nodes are in two un-coupled layers. In22, the 
authors argued that couplings should be looked at from even a lower level, that is, the actor-level so nodes of an 
actor with similar neighbourhood over the layers should be maximally coupled (i.e., assigned a large ω), while 
those with different neighborhoods across the layers should be minimally coupled. Figure 6b, for example, reports 
the multi-layer modularity scores using uniform coupling Qu with ω = 1 versus those using customised coupling 
Qc for three different clusterings over the network illustrated in Fig. 6a. The figure shows that assigning uniform 
coupling strength to all couplings might lead to favoring communities that expand over multiple layers even if 
actors nodes have different neighborhoods across the layers (Qu is higher in cases (b) and (c)).

Multi-layer Community Structures Recovered by Maximising Modularity
In this section, we will refer to the clustering of a single layer nodes resulted by maximising the modularity on 
that layer as the optimal single-layer groups, and to the clustering resulted by maximising the generalised mod-
ularity on the whole multi-layer network as multi-layer communities. We consider two groups of nodes in two 
different layers overlapping, if there exist at least two nodes (one in each group) that refer to the same actor. When 
two groups of nodes from two different layers appear together in one multi-layer community, we refer to that as 
cross-merging. We refer to the first part in Eq. 2 as the intra-layer gain, and to the second part as the coupling gain.

A multi-layer community detection task that maximizes multi-layer modularity involves partitioning the 
multi-layer network nodes into a clustering  that maximizes Eq. 2, as shown before. The intra-layer gain pushes 
nodes towards being partitioned into their optimal single-layer groups. The coupling gain pushes the overlapping 
optimal single-layer groups belonging to different layers towards cross-merging so to constitute multi-layer com-
munities. The patterns identified by maximising both parts together largely depend on the value given to ω which 
seems to play the role of cross-merging orchestrator in the maximisation process (assuming that nodes are 
scanned in each layer separately first then across layers). For any solution not to partition the nodes according to 
their optimal single-layer groups, this results in a punishment in the intra-layer gain in Eq. 2. However, if this 

Figure 4.  Modularity scores, calculated using multi-layer modularity, for three different clusterings over the 
same multiplex network constituted of 3 layers and 15 actors and edges that are distributed across three cliques 
per layer. (a) Q = 0.77, (b) Q = 0.53 (c) Q = 0.41.
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punishment can be compensated by the coupling gain, this gives some freedom (even if limited) to produce clus-
terings that do not firmly respect the single-layer optimal modularity constraints.

Let us assume that community labeling by multi-layer modularity maximisation happens in an order such that 
it scans the network nodes as follows. First, it scans pairs of nodes belonging to the same layer to maximise only 
the intra-layer gain, so nodes are labeled according to their optimal single-layer groups, and then it scans pairs of 
nodes belonging to different layers so their community labels can be updated such that the coupling gain is max-
imised. During the re-labeling phase, a node might face two types of relabeling: (1) the one that results only on a 
larger coupling gain without affecting the intra-layer gain. The result of this is cross-merging the overlapping 
optimal single-layer groups across layers without altering their single-layer grouping (i.e., without having to put 
two nodes that belong to two different single-layer groups in their layer together in the same multi-layer commu-
nity). (2) One where adopting the new label requires the node to give up its optimal single-layer grouping and 
having to co-exist with nodes that do not belong to its optimal single-layer grouping. The result of this is 
cross-merging overlapping groups across layers and altering their single-layer grouping. Figure 7 illustrates the 
difference between the two cases where nodes are coloured according to their optimal single-layer grouping. As 
the figure shows, the multi-layer community C2 in case (I) groups together nodes from both layers (the blue from 
layer L1 and the black from layer L2) without altering their optimal single-layer grouping. In case (II) however, the 

Figure 5.  Styles of coupling nodes in multi-layer networks. (a) The two styles of coupling nodes in multi-layer 
networks. (b) A possible effect of the coupling strategy on the output of community detection.
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multi-layer community C1 allows the grouping of the black and the green nodes from layer L2 together even 
though in their optimal single-layer grouping they do not appear together.

Understanding the effect of ω on the resulted multi-layer community structure is very important for the inter-
pretablity of these communities. In general, when the coupling style used to couple nodes across layers is adjacent 

Figure 6.  Effect of using customised coupling strength on the modularity scores.

Figure 7.  An illustration of two types of community structures possible to be recovered by modularity 
maximisation. Nodes are coloured according to their optimal single-layer grouping. Case (I), shows multi-layer 
communities that do not alter the optimal single-layer grouping. Case (II) shows a multi-layer community that 
alters the optimal single-layer grouping (i.e., it forces the blue and green nodes in layer L2 to appear together in 
one community).
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or complete, low ω overstates the importance of the intra-layer edges and this results in multi-layer communities 
where nodes in each layer are in their optimal single-layer grouping (i.e., densely connected with each other in 
their layer and sparsely connected with the rest of the network). Assigning large values to ω washes out the effect 
of the intra-layer edges and overstates the importance of coupling edges (i.e., the co-existence of nodes belonging 
to the same actor in one community). This results in multi-layer communities where nodes do not necessarily fall 
in their optimal single-layer groupings. In both cases, providing an actor-level qualitative interpretation to such 
communities is not straightforward. Figure 8 provides a colored illustration of the grouping of nodes in a 3-layer 
400-actor multiplex network for different assignments of ω. The value ω = 0 shows the implanted grouping 
assigned to the nodes in each layer where each different color refers to a different group label. The multi-layer 
community structure resulted by maximising modularity is shown for ω = .0 0001, ω = 1 and when ω is custom-
ised based on the common neighbours across layers.

On a qualitative level, there are many cases where explaining multi-layer communities resulted by modularity 
maximisation is not an easy task. When the optimal single-layer groupings across layers are relatively aligned, the 
resulted multi-layer communities can be interpreted as groups of actors who interacted together significantly in 
all layers and less frequently with other actors out of their group. However, if the optimal single-layer groups are 
not aligned across layers, the interpretation of multi-layer communities resulted by modularity maximisation 
becomes less straightforward. One example can be the multi-layer communities in Fig. 8. Providing an actor-level 
interpretation to any community as “group of actors who….” such that this definition applies to all the other com-
munities does not seem to be an easy task.

Results
Here we report the results of testing the accuracy of modularity maximisation methods (i.e., ability to recover 
ground truth communities) for the different multi-layer community models proposed in Section 1. With each 
model, the accuracy is calculated as a function of the coupling strength (ω) and the coupling style (adjacent or 
complete). To investigate whether coupling edges are treated as identity edges or as edges that connect nodes of 
the same community, we experimentally include a third coupling style, we refer to it as community-based, which 
couples nodes across layers only if they have the same community membership (given that the ground truth is 
known upfront and the generative model we use for our synthetic networks provides a node-level ground truth 
together with the generated networks). The following summarises our findings:

From a multi-layer modularity perspective, inter-layer coupling edges are not perceived as 
identity edges but edges that couple nodes of the same community.  A general observation from 
our experiments (Fig. 9) is that the highest accuracy of community discovery with more complex community 
models than the pillar model is achieved only when the coupling style is community-based (only nodes of the 
same community are coupled). This suggests that multi-layer modularity maximisation treats inter-layer coupling 
edges as community edges and when coupling-edges are used as identity-edges (complete or adjacent), the accu-
racy of modularity maximisation seems to drop down with more complex community models than the pillar one.

Figure 8.  A coloured representation of the community assignment resulted by maximising the generalised 
modularity as a function of ω in a 3-layer 400-actor multiplex network. The x axes represent the actor id, while 
the y axes represent the layer, and different colours represent different community assignments.
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Less accurate does not necessarily imply less modular according to multi-layer modularity.  
While the accuracy scores fluctuate as a function of both the coupling style and the value of the coupling strength 
(Fig. 9), modularity scores seem to be stable. This suggests that less accurate clusterings are not necessarily less 
modular according to the generalised modularity.

Pillar communities are accurately recoverable under all coupling styles and a very small posi-
tive assignment of ω.  As shown in Fig. 9a, a very small positive assignment of ω (ω = −10 13) set uniformly 

Figure 9.  Accuracy using omega-index and modularity scores of community detection using multi-layer 
modularity maximisation as a function of the coupling type and the value of the coupling strength.
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across layers guarantees a very high accuracy for recovering pillar communities independently of the coupling 
style used to couple nodes across layers.

Semi-pillar communities and partially overlapping communities cannot be accurately recovered 
using adjacent or complete coupling styles and a uniform positive assignment of ω.  As the com-
munity model gets more complex compared to the pillar model, modularity maximisation seems to fail at accurately 
recovering the ground truth communities when the coupling style is the adjacent or the complete one independently 
of the value given to the coupling strength ω (Fig. 9b–d). However, if coupling edges are placed only among nodes 
belonging to the same multi-layer community, multi-layer modularity maximisation seems to be able to recover the 
ground truth communities and shows a stable behaviour with respect to the value given to ω.

With hierarchical communities, the value ω controls the granularity of community detection.  
With the hierarchical community model (M5), we study the structure of the detected communities as a function 
of ω, instead of reporting their accuracy. Figure 10b–d illustrate the structure of the detected multi-layer commu-
nities using modularity maximisation when the implanted communities in each layer reflect the level of hierarchy 
illustrated in Fig. 10a. We show only the results when the coupling type is complete since the other types do not 
significantly change the output in this model. We can see that using high values of ω forces the community mem-
bership of the highest level in the hierarchy across the layers. Nonetheless, using lower values of ω does not force 
the community membership of the highest level of the hierarchy across all the nodes across the layers but only 
part of them such that the single-layer optimal groupings are guaranteed.

Discussion
In this article, we investigated multi-layer modularity maximisation, an extensively used tool for community 
discovery in multi-layer networks. We infer unspoken assumptions that condition the ability of multi-layer mod-
ularity maximisation to recover ground truth communities by investigating the role of ω and coupling edges 
introduced in multi-layer modularity. Our main findings can be summarised as follows: (1) the high accuracy of 
multi-layer modularity maximisation is conditioned by a coupling style that couples only nodes of the same com-
munity together, (2) when a proper coupling is chosen in a multi-layer network generated using one of the models 
(M1–M4),- the value of ω assigned to the coupling edges has no impact on the accuracy of community detection 
using multi-layer modularity maximisation (as long as ω > 0), (3) less accurate does not necessarily mean less 
modular according to multi-layer modularity, and (4) with hierarchical multi-layer communities, ω controls the 
granularity of the detected patterns and the qualitative interpretation of the identified patterns is not always clear.

The fact that the accuracy of multi-layer modularity maximisation with more complex multi-layer community 
models is conditioned by coupling nodes of the same community together (rather than the same actor) sheds 
a light on the importance of coupling style for a successful recovery of the communities and hints to limita-
tions in the coupling strategies available in the literature to couple nodes in multi-layer networks. While some 

Figure 10.  A coloured representation of the community assignment resulted by maximising the generalised 
modularity as a function of ω in a 3-layer 400-actor multiplex network. The x axes represent the actor id, while 
the y axes represent the layer, and different colours represent different community assignments.
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heuristics can be developed to predict whether two nodes of an actor belong to the same community or not, and a 
community-based coupling can be built on top of that, a valid question can be: why should the accurate recovery 
of multi-layer communities be conditioned by knowing which nodes of the same actor fall in the same commu-
nity, which is what the community detection method itself is supposed to infer?

The reason why networks should be analysed in a multi-layer manner is that there are dependencies among 
different interactions/relationships and providing any analysis by considering only one of these interactions 
might give misleading or incomplete findings. This means that for the formation of multi-layer communities, 
different dependencies among the layers might result in different structures of multi-layer communities (a very 
high dependency among all layers for example results in pillar communities). While this motivation is sound, the 
question becomes whether it is always possible to reflect these inter-dependencies in the tools used for multi-layer 
network analysis, especially community detection. Thinking of multi-layer modularity, the coupling strength 
ω (as suggested by the original authors21) is a binary variable that takes one of the two values: either 0 to refer 
to the non-existence of a coupling edge between two nodes of an actor, or a positive value ω > 0 to refer to the 
existence of that coupling edge. When the proper coupling is provided, our experiments showed that the posi-
tive value assigned to the existent couplings does not affect the accuracy of community detection. This means 
that this parameter with models (M1-M4) has no role more than referring to existent (ω > 0) or non-existent 
(ω < = 0) couplings. This adds another limitation to modularity maximisation based methods because with this 
limited interpretation of ω, the only multi-layer ingredient in the generalised modularity, there is no way to 
reflect different levels of inter-dependencies among the different layers and/or nodes of an actor and to take these 
inter-dependencies into account in community discovery.

As shown in our experiments, multi-layer modularity scores do not necessarily follow the same trends the 
accuracy of the recovered communities follow. Indeed, the modularity scores of the accurately recovered clus-
terings are not necessarily higher than those with lower accuracy. This raises another important question: is 
multi-layer modularity maximisation a valid proxy for finding complex multi-layer communities? Or is the idea 
of it being as such mostly inherited from the success and the popularity the single-layer implementation has had?

The qualitative interpretation of the recovered patterns in networks generated using one of the community 
models (M1–M4) does not change much from those identified using the single-layer modularity. If edges were 
created such that nodes of the same community are densely connected within the community and sparsely con-
nected with the rest of the network, the patterns identified by maximising multi-layer modularity satisfy that con-
dition. With the hierarchical community model, however, it is not clear how to interpret the identified patterns 
for values of ω other than 0 (the lowest granularity of the hierarchy). The question is whether using multi-layer 
community detection in this case provides any additional information the single-layer community detection on 
each layer separately cannot provide and we tend to believe that multi-layer community detection here using 
multi-layer modularity maximisation can give misleading results from a qualitative perspective.

Methods
For recovering the multi-layer communities that maximise multi-layer modularity, we chose Generalised Louvain 
method33 as a representative method for the class of modularity maximisation community detection methods. 
The choice of this method comes for both being a well-referenced method in the literature and serving as one of 
the best approximation methods among other modularity-maximisation methods in terms of its accuracy and 
performance. Since communities resulted by this method might vary from one execution to another because the 
order by which the nodes are scanned by this method is chosen at random, we provide the final result of commu-
nity detection after 10 executions and choosing the one with the maximum modularity as an output.

For each of the community models (M1–M4) we calculate the accuracy of the resulted communities as a 
function of the coupling style (adjacent, complete, and community based) and the value of the coupling strength 
ω assigned to the coupling edges. For measuring accuracy, we chose omega-index for its sensitivity to different 
types of dissimilarities among clusterings and its ability to remove the by-chance agreement from the final score 
as we discussed in a previous study34.

As regards the generation of the multi-layer networks, we refer to the generative model in16. To the best of our 
knowledge, this provides the most general platform in the literature for generating synthetic multi-layer commu-
nities that takes into consideration different types of multi-layer networks. The generation of a multi-layer com-
munity using this model goes through the following three steps. First, assuming a multi-layer network of n actors 
and m layers and initial number of communities k to be planted in each layer, the model starts by assigning nodes 
in each layer randomly to k community memberships (a categorical distribution can be used for this step). At the 
end of this phase, nodes in each layer will be distributed over k not necessarily equal in size groups. In the second 
phase, nodes start to propagate their community memberships across layers with a probability equal to the 
dependency between the layers. The type of multi-layer network we want to generate, i.e., multiplex or 
time-dependent, controls the order and the way this propagation of community labels across layers happen. At 
the end of this phase, community memberships that were set in the first phase might be updated based on the 
assumed dependency p set among layers. At the third phase, a multi-layer edge generation model can be used to 
create edges of the multi-layer network given the implanted community assignments resulted from the previous 
step. In our experiments, we generate out synthetic networks using a variant of the degree-corrected SBM bench-
mark that avoid the creation of self-loops and parallel edges16. We chose to fix the mixing parameter in edge 
generation phase in our experiments to a very small value (µ = .0 05). That is because our main goal from the 
experiments is not to test the ability of multi-layer modularity maximisation to recover noisy patterns, but to test 
the ability to recover complex multi-layer patterns.

We chose our synthetic multi-layer networks to be 4-layer networks of 1000 actors (i.e., 4000 nodes). To gen-
erate pillar communities (M1), we use the aforementioned generative model and we generate a temporal network 
with a very high dependency across the layers (p = 1). To generate the semi-pillar layer-adjacent communities 
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(M2), we generate two sets of pillar partitions on two 2-layer temporal networks. We use the resulted partitions 
to generate a 4-layer multi-layer network where in the first two layers we plant the first set of partitions and in the 
last two layers we plant the second set of partitions. For (M3), we do the same except that the 4-layer multi-layer 
network is resulted by implanting the first set of partitions in the first and the third layer, while in the second and 
the fourth we plant the second set of partitions. As to partially overlapping communities, we generate multiplex 
networks with a moderate dependency among layers (p = 0.3). This, according to the used generative model, 
results in communities that are not perfectly pillar but partially overlapping.
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