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Abstract. Multiplex networks are defined by the presence of multiple
edge types. As a consequence, it is hard to produce a single visualiza-
tion of a network revealing both the structure of each edge type and
their mutual relationships: multiple visualization strategies are possi-
ble, depending on how each edge type should influence the position of
the nodes in the sociogram. In this paper we introduce multiforce, a
force-directed layout for multiplex networks where both intra-layer and
inter-layer relationships among nodes are used to compute node coor-
dinates. Despite its simplicity, our algorithm can reproduce the main
existing approaches to draw multiplex sociograms, and also supports a
new intermediate type of layout. Our experiments on real data show that
multiforce enables layered visualizations where each layer represents an
edge type, nodes are well aligned across layers and the internal layout of
each layer highlights the structure of the corresponding edge type.

Keywords: Visualization · Multiplex network · Layout
Force-directed

1 Introduction

Sociograms, that is, visual representations of the relationships between indi-
viduals, have been used since the origins of social network analysis, a notable
example being Moreno’s seminal work introducing this concept [22]. In the same
book we also find a sociogram representing a multiplex network, where multiple
types of relationships between the same group of individuals coexist. However,
while several layout algorithms for simple graphs have been developed since then,
developments in visualization methods for multiplex networks have been limited.

One natural way to visualize a multiplex network is to treat it as an edge-
typed multi-graph using different colors and line styles to distinguish between the
different edge types, as in Fig. 1(a) and as done by Moreno himself. However, this
option can quickly lead to a very dense representation hiding relevant network
structures even for very small networks [26]. Alternatively, different types of
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connections can be sliced into different layers, with the same node replicated on
multiple layers, as in Fig. 1(b-d). This approach has been used in the literature
to represent social/historical [21,23] networks, but also several other types of
multiplex networks, from traffic [4,19] to biological [4] and financial [7] networks,
sometimes visualized in a 2.5-dimensional space.

However, replicating the same node on multiple layers introduces a new ques-
tion: how should the positions of multiple occurrences of the same node relate to
each other? Two main approaches for visualizing multiplex networks sliced into
layers have been used: visualizing each layer independently of the others, as in
Fig. 1(b), or keeping the same layout in all layers, so that all occurrences of the
same node will result aligned on a straight line if the layers are visualized one
besides the other, as in Figs. 1(c) and (d).

Using the first approach we can appreciate the structure of each layer. For
example, in Fig. 1(b) we can see clear communities in the first (left-most) layer,
representing the relationship eating lunch together, but less evident groups in
the last layer about working relations. However, we get no information about
the relationships between layers, e.g., whether the communities in the first layer
correspond to tight groups also in the last.

Using the second approach it is easier to find the same nodes across different
layers, but this does not necessarily help in understanding relationships between
whole layers, and can also be misleading. As an example, in Fig. 1(c) all the
nodes are aligned on the layout computed on the first layer, and this creates
the illusion of the presence of similar communities in the fourth and fifth layers.
Computing the layout on a combination of all edges in all layers or on one of
the other layers, as in Fig. 1(d), has instead the effect of hiding the communities
found in the first layer.

In this paper we claim that (1) the aforementioned approaches are just spe-
cific cases of a more general method, and can thus be produced by the same
(simple) algorithm, and that (2) this algorithm can also produce new intermedi-
ate layouts between the ones mentioned above. These ideas are not new, as they
were already explored in the context of dynamic graph drawing [8]. We call the
general layout and algorithm described in this paper and tested on multiplex
social networks multiforce.

Multiforce is based on a force-directed algorithm (in this paper we extend
the popular Fruchterman-Reingold method) and uses two main types of forces:
intra-layer and inter-layer , that can be tuned to impact specific layers more
or less than others. Intra-layer forces attract neighbors inside the same layer,
making them closer, as in traditional layouts for monoplex networks. Inter-layer
forces try to align instances of the same node on different layers1. Figure 2 gives
an intuition of how these forces operate. In addition, we use repulsive forces as in
the original algorithm, and also gravity for the cases where no inter-layer forces
are active and the network contains more than one component.

1 In theory inter-layer forces can also be used to visualize more general networks,
where edges can cross layers, but in this work we focus on multiplex networks.
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Fig. 1. Four visualizations of the AUCS multiplex network
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Fig. 2. The effect of intra-layer and inter-layer forces on node positions

To perform an objective comparison between our approach and a traditional
non-multiplex force-based layout algorithm we have defined two quality metrics
called respectively external fit and internal fit. These are naturally defined as the
forces which would be active on the nodes if we were only trying to respectively
align them across layers or draw them according to the internal structure of
each layer. We have then used these metrics to characterize different settings
of our general algorithm when applied to real social networks. In addition to
this evaluation, we have also executed our algorithm on a simple dataset to
qualitatively characterize the resulting diagrams.

2 The Multiforce Layout

Multiforce belongs to the slicing class of multiplex layouts, and is different from
existing approaches, because it allows a balancing of the effects of intra-layer
and inter-layer relationships. Multiforce extends the Fruchterman-Reingold algo-
rithm [10]. This is one of the most popular options available in graph analysis
software packages, although it is not a state-of-the-art method; several variations
of this approach have been developed, but its simplicity allows us to focus on
the simple variation of the way in which forces are defined, which can then be
adapted to more complex algorithms. As mentioned in the introduction, multi-
force is based on two types of attractive forces. The nodes are positioned on a
set of planes, one for each layer or type of relationship – this setting is sometimes
called 2.5-dimensional, because it looks 3-dimensional but the z-coordinates of
the nodes are fixed and limited to the number of planes/layers. In this paper we
visualize all layers on the same plane as in Fig. 1, because a 3-dimensional graph
is visually intriguing but not easy to understand without the option of interac-
tively rotating the diagram. Intra-layer forces, that can be weighted differently
in each layer, attract pairs of nodes connected on the same layer. Inter-layer
forces influence the position of nodes in different layers connected by inter-layer
edges, or corresponding to the same node in the case of multiplex networks.

The same idea behind multiforce was already proposed and tested in the
context of dynamic graphs [8], where layers are not unordered as in the case of
multiplex networks but are organized in a sequence.
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The pseudo-code of multiforce is presented in Algorithm 1, and the algorithm
is implemented in themultinet library2. The algorithm takes a multiplex network
G = (N,L, V,E) as input, where N is a set of nodes, L is a set of layers, (V,E)
is a graph and the elements of V are pairs ⟨node, layer⟩. We notate v.layer the
layer of an element v ∈ V and v.node the node corresponding to an element
v ∈ V .

Lines 13–29 are the same as in the original algorithm, and compute the
displacement of each node based on its neighbors (attractive forces) and other
nodes (repulsive forces), with the addition of weights that can be used to spec-
ify on which layers the layout should be computed according to the original
algorithm (27–28). Lines 30–37 extend the original algorithm and compute the
displacement caused by the position of the node on other layers, to control node
alignment. This is also weighted, to allow the user to turn this feature on and
off for all or some layers (34–35). In our tests the function cool (45) reduces t
linearly, so that it becomes 0 at the last iteration.

Some details of our algorithm can also be changed without affecting its under-
lying idea. First, we can modify lines 6–12 to assign the same initial random
coordinates to the same node across different layers, anticipating line 8 before
the for loop. A weighting factor INLA[v] can also be added at line 20, so that
both attractive and repulsive forces are reduced or reinforced together. Finally,
lines 41 and 42 have been retained from the original algorithm and ensure that
the nodes do not exit the frame specified by the user, but are not necessary if
the final coordinates are re-scaled to fit it or a gravity force is added to control
the spreading of the nodes so that all slices retain similar extreme coordinates.
In this paper gravity is only used in the examples with no inter-layer forces and
multiple components on the same layer.

2.1 Main Settings

The multiforce algorithm can produce both existing and new layouts using the
following settings:

1. Multi-graph: this layout, where each node has a specific position that does
not depend on the layer and all edge types are considered when computing
the node coordinates, is obtained by setting the same positive value for intra-
layer weight in each layer and infinite (or, in practice, very high) inter-layer
weights. The intra-layer weights will then keep nodes aligned across layers,
and intra-layer forces will produce the layout by moving these “node pillars”
around.

2. Sliced, independent: this layout corresponds to the application of the force-
based algorithm on each layer, and is obtained by using positive intra-layer
weights and setting inter-layer weights to 0.

3. Sliced, aligned on layer x: this layout is computed based on one of the
layers, and nodes are kept aligned on the other layers. It is obtained by

2 https://cran.r-project.org/package=multinet.

https://cran.r-project.org/package=multinet
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Algorithm 1. Multiforce
Require: G = (N,L, V,E): a multiplex network
Require: W : width of the frame
Require: L: length of the frame
Require: #iterations
Require: INLA, INTERLA: intra- and inter-layer weights
1: fr = function(z, k){ return k2/z; }
2: fa = function(z, k){ return z2/k; }
3: area := W · L
4: k :=

√
area
|N| ;

5: t :=
√

|N |;
6: for (n ∈ N) do
7: for (v ∈ V s.t. v.node = n) do
8: (x, y) = random coordinates;
9: pos[v] = (x, y)
10: z[v] := index(v.layer);
11: end for
12: end for
13: for ( i = 1 to #iterations ) do
14: // calculate repulsive forces
15: for (v ∈ V ) do
16: disp[v] := 0;
17: for (u ∈ V ) do
18: if (u ̸= v and u.layer = v.layer) then
19: △ := pos[v] − pos[u];
20: disp[v] := disp[v] + (△/| △ |) ∗ fr(| △ |);
21: end if
22: end for
23: end for
24: // calculate attractive forces inside each layer
25: for ((u, v) ∈ E) do
26: △ := pos[v] − pos[u];
27: disp[v] := disp[v] − (△/| △ |) ∗ fa(| △ |, k) ∗ INLA[v];
28: disp[u] := disp[u] + (△/| △ |) ∗ fa(| △ |, k) ∗ INLA[u];
29: end for
30: // calculate attractive forces across layers
31: for (n ∈ N) do
32: for ({u, v} with u, v ∈ V , u.node = v.node = n) do
33: △ := pos[v] − pos[u];
34: disp[v] := disp[v] − (△/| △ |) ∗ fa(| △ |, k) ∗ INTERLA[v, u];
35: disp[u] := disp[u] + (△/| △ |) ∗ fa(| △ |, k) ∗ INTERLA[u, v];
36: end for
37: end for
38: // assign new positions
39: for (v ∈ V ) do
40: pos[v] := pos[v] + (disp[v]/|disp[v]|) ∗ min(disp[v], t);
41: pos[v].x := min(W/2,max(−W/2, pos[v].x));
42: pos[v].y := min(L/2,max(−L/2, pos[v].y));
43: end for
44: // reduce the temperature
45: t := cool(t);

46: end for
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specifying a positive intra-layer weight for layer x and setting the other intra-
layer weights and the inter-layer weights to 0.

4. Balanced: this intermediate layout is obtained by setting a positive weight
(for example, 1) for all inter- and intra-layer forces.

In Sect. 3 we experimentally study the stability of the layouts depending on
the chosen weights, showing that they are very stable and largely independent
of the specific values we use for the positive weights.

2.2 Time Complexity

When the number of layers is constant, the asymptotic time complexity of mul-
tiforce is the same as for simple networks, with a larger constant. Separating
nodes based on repulsive forces requires to compare each of the |N | nodes on
each layer with all the other nodes on the same layer, for a total time complex-
ity of O(|N |2|L|) if no spatial indexes are used. Computing inter-layer forces on
a node requires access to all its replicas, one on each other layer, for a total
complexity of O(|L|2|N |). For a complete network with |N | nodes and |L| lay-
ers, there are at most (|L| |N |(|N |−1)

2 ) intra-layer edges contributing to attractive
forces. In the typical case when |L| is small or significantly smaller than |N |
the time complexity of drawing a multiplex network with the multiforce lay-
out is thus O(|N |2) assuming a constant number of iterations. In general, the
complexity is O(|N |2|L|+ |L|2|N |).

3 Experimental Evaluation

In this section we present an experimental evaluation of the new type of layout
(balanced) enabled by multiforce, divided into two parts. First, we provide a
quantitative evaluation where we show how the algorithm can produce layouts
that are close to an ideal case when executed on a number of real datasets.
Then, we execute the algorithm on the real dataset shown at the beginning of
the article, to provide an additional qualitative analysis.

Please notice that we are not claiming that a balanced layout is the best
possible: each of the layouts we can obtain using multiforce, including the ones
already existing in the literature, highlights some aspects of the network. There-
fore, it is important to be able to produce many of them during an exploratory
analysis, and to be able to choose among them when presenting an analysis
depending on what aspect we want to emphasize. The additional focus we put
on the balanced layout in this section is only due to the fact that the other lay-
outs that can be produced by multiforce have already been used and described
in previous works.

3.1 Quantitative Evaluation

In this section we compare different layouts against an ideal case where each
layer is drawn independently of the others, to optimize its internal readability,
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and at the same time all occurrences of the same node across different layers are
kept perfectly aligned. Notice that such an ideal visualization is impossible to
obtain in general, except when the two layers are (almost) identical. To compute
the distance between the ideal case and our tests we can define two measures
representing these two criteria: the sum of the forces still active on the nodes
inside each layer (called internal fit) and the displacement between nodes in
different layers (called external fit), also computed as the sum of the inter-layer
forces still active at the end of the algorithm. Notice that an optimal diagram as
defined above would contain both internally stable and aligned nodes, so both
measures would be close to 0, indicating the best possible layout (assuming that
a force-based approach is used).

In this context, we perform two experiments. The first tests the effect of the
parameters (intra- and inter-layer forces) on the external and internal fit when
applied to our working example. Figure 3 shows that the results are very stable
with respect to the input parameters. We remind the reader that the objective
is to achieve low values for both internal and external fit.
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Fig. 3. Effect of parameters on internal and external fit. Low internal and external
forces (vertical axis) correspond to an ideal layout. For most combinations of inter-
and intra-layer weights both forces are low.

In addition to the indication of the stability of the parameters, Fig. 3 suggests
that a balanced layout can obtain good scores on both internal and external fit
at the same time when using both intra-layer and inter-layer forces. We compare
the results of the various approaches on the real datasets summarized in Table 1:

– A hybrid online/offline social network with five types of relationships among
the employees of a CS department [26], also used as our working example.

– Traditional multiplex networks from the Social Network Analysis literature.
– A dataset showing the relationship among physicians in four different cities,
collected to investigate information diffusion about drugs [13].
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– Two transport networks, one with flight connections in Europe [3] and one
about the London underground [5].

Table 1. Properties of real-world networks

Network # Layers # Nodes # Edges

Social/Hybrid – AUCS 5 61 1240

Social/Historical – Padgett 2 15 35

Social – Krackhardt High Tech 3 16 166

Social – Lazega Law Firm 3 212 1663

Social – Physicians 3 241 1370

Transport – EU airlines 37 417 3588

Transport – London 3 369 441

Table 2. Results of experiments on real data

Network Balanced Independent Aligned (avg) Multi-graph

Inter Ext Inter Ext Inter Ext Inter Ext

AUCS 4.78 9.17 1.03 1489.21 149.72 0.15 112.713 0.02

Padgett-Florentine-
Families

2.02 3.71 0.27 67.19 26.53 0.07 10.899 0.00

Krackhardt High Tech 4.92 9.79 0.40 84.86 117.02 0.06 19.766 0.00

Lazega Law Firm 4.61 8.40 1.96 40.26 55.73 0.05 551.532 0.02

Physicians 5.06 6.36 2.93 1342.36 66.83 0.46 1451.43 0.10

EU Air 3.66 6.12 1.58 3142.33 217.67 0.30 851.04 0.98

London 2.73 1.52 2.10 138.84 95.46 0.04 131.88 0.03

For each network, Table 2 shows how different layouts behave with respect to
the two aforementioned measures (internal fit and external fit) in the plots. We
remind the reader that high values of the former means that some layers have
not been correctly visualized according to their internal structure, for example,
the nodes in a community may have been spread around instead of being close
to each other. A high value of the latter means that nodes are not aligned across
layers, for example, a node may have been visualized in the top left corner in
one layer and in the top right in the other. The ideal case would be to have 0
for both metrics. For each network, several settings have been tested.

As expected, for each network the independent visualization generates nodes
that are not well aligned, represented by high external forces active on the nodes.
On the contrary, computing the layout based on one layer prevents other layers
from having good internal layouts, as shown by the high internal forces active
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on the nodes when the aligned strategy is used. The balanced option (first case)
presents internal layouts that are less good than the ideal case, and node align-
ments that are also less good than the best possible option, but both are signif-
icantly better than the aspect not optimized using other strategies. In practice,
this corresponds to layouts similar to the one shown in Fig. 4. The multi-graph
approach presents results that in many cases may seem similar to the average
of the results obtained using the aligned approach. However, consider that the
results for the aligned approach are an average, where for each test the layout
is computed on a different layer. Therefore, with the aligned approach there is
always one layer with nearly optimal internal fit (that is, with a very low value).

Fig. 4. Alignment of network structures across layers using a balanced visualization,
with both intra-layer and inter-layer forces active. One community in the first layer has
been highlighted, and the same nodes are also highlighted on the other layers (when
present)
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3.2 Qualitative Evaluation of the New Balanced Layout

In Fig. 4 we have visualized the 5-layer social network already shown in the
introduction using both inter- and intra-layer forces, following the intuition dis-
cussed in the previous section about the ability of this setting to keep nodes
reasonably aligned while preserving intra-layer structures. Each layer has been
drawn according to their internal organization, showing peculiar structures: for
example, the nodes in the community marked in the top-left diagram are not
present in all the other layers, and where present they are not so well connected
to each other. However, we can also see how the nodes belonging to this com-
munity have been visualized at similar locations in the other layers, providing
information about inter-layer relationships. We can see, for example, that the
community is split into two sub-communities in the third (top-right) layer, that
it is not present in the fourth layer, where the same nodes are connected to
different parts of the graph but a core subset of them is still forming a triangle,
and that they form a similar but less dense community in the fifth layer. Notice
that in the fourth layer the nodes are still more or less in the same position
as in the first layer, despite the fact that they do not form a community. In
this way it becomes easier to locate them – in an interactive plot we can also
use a 2.5-dimensional visualization as in the previous section, making the task
straightforward as long as the nodes are more or less aligned.

4 Related Work

In this section we describe existing approaches to compute network layouts with
a single type of edges, also known as monoplex networks, and for multiplex
networks.

4.1 Monoplex Network Visualization

Many layouts have been designed to visualize monoplex networks. Here we briefly
review the ones that are more relevant for our approach. For an extensive review,
the reader may consult [29].

Multi-scale layouts first create some core sub graphs, then they add other
nodes until all nodes and edges have been processed [17,29]. Random layouts [6]
and circular layouts [20] are two categories of layouts which are appropriate for
small graphs with few nodes and edges, because they do not consider aesthetic
criteria: many edge crossings and node overlappings can appear.

Among the most used visualization methods, force-directed algorithms con-
sider a graph as a physical system where forces change the position of nodes.
The two best known force-directed layouts are Fruchterman-Reingold [10] and
Kamada-Kawai [14,15]. In the Fruchterman-Reingold layout nodes have repul-
sive power and push other nodes away, while edges attract neighboring nodes. In
this layout nodes are considered as steel rings having similar loads and edges are
like springs attracting neighbouring rings. This algorithm consists of three main
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steps. First, all nodes are distributed randomly. Second, repulsive forces separate
nodes. The value of repulsive force depends on the positions of the nodes. Third,
for each edge and based on the position of nodes after repulsion, attractive forces
are calculated [10]. In the Kamada-Kawai layout an energy function is defined
for the whole graph based on shortest paths between nodes, and positions are
iteratively updated until the graph’s energy is minimized [15].

Bannister et al. [1] proposed a force-directed layout to change the position
of nodes so that more graph-theoretically central nodes are pushed towards the
centre of the diagram. In this algorithm, an additional force called gravity is
used to change the position of more central nodes. For each node v in a graph
G the position of the node is influenced by the following force:

I[v] =
∑

u,v∈V

fr(u, v) +
∑

(u,v)∈E

fa(u, v) +
∑

v∈V

fg(v) (1)

where fr and fa are respectively repulsive and attractive forces, and fg is the
gravity force, measured as:

fg(v) = γtM [v](ξ − P [v]) (2)

In this equation M [v] is the mass of node v, which can be set according to
node degree, P [v] is the position of v, γt is the gravitational parameter and
ξ = ΣvP [v]/|V | is the centroid of all nodes. Notice that forces in the equations
above are vectors.

Other extensions of force-directed layouts have considered the inclusion of
additional domain-specific information in the definition of the forces. An example
is [34], where the definitions of attractive and repulsive forces include terms
representing trust in social networks.

Traditional force-directed methods are suitable only for small networks, but
they are very popular because they often practically succeed in highlighting com-
munities (that is, groups of well connected nodes) and increasing graph readabil-
ity. To address their shortcomings, force-based layout algorithms are sometimes
split into multiple phases, with an initial preprocessing of the data to generate
good starting node dispositions or to reduce data complexity. As an example,
Gajer et al.’s method first partitions the graph into subgraphs [31]. The smallest
subgraph is then processed independently and thus more efficiently. Afterwards,
a force-directed refinement round changes the values of initial node positions
and the next smallest subgraph is added to the previous one, with these steps
being repeated untill all nodes have been processed. [35] follows the same steps,
setting initial node positions in a different way. Similarly, Peng et al. proposed
the Social Network Analysis Layout (SNAL) by also separating a network into
subgroups, analyzing relationships between them and positioning nodes based on
their relative centralities [32]. Recent works have shown how to use force-based
approaches on relatively large graphs [33].

Another family of layouts, that can also be combined with force-directed
algorithms, are constraint-based layouts [9]. These layouts force nodes to appear
at specific positions. For example, nodes are placed on a frame in a way that they
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do not overlap, or are horizontally and vertically aligned, as in the orthogonal
layout [9,29]. In these layouts it is more difficult to isolate special structures
such as communities and time complexity is noticeably high.

One important assumption in graph drawing is a correspondence between
some aesthetic features of the diagrams and their readability. Therefore, some
visualization algorithms explicitly target these features. One such criterion is
that too many edge crossings make a graph more difficult to interpret. The
crossing number cr(G) of a graph G is the smallest number of crossings appearing
in any drawing of G [27]. Several algorithms have been proposed to reduce edge
crossing in monoplex networks. For example, Shabbeer et al. [28] developed a
stress majorization algorithm, as initial proposed in [11]. In [27] and [2] the
concept of edge crossing is elaborated and equations for measuring the number
of edge crossings in different graphs are reviewed. Another aesthetic feature
impacting graph readability is node overlapping. Two popular methods to reduce
node overlapping were proposed in [12,18].

4.2 Multiplex Network Visualization

Different methods have been discussed for visualizing multiplex networks. We
categorize these methods into four main classes: slicing, flattening, simplification-
based, and indirect.

One way of visualizing multiplex networks is to consider each layer or rela-
tionship type as a monoplex network and to connect these monoplex networks
using inter-layer edges [4]. The layers can have aligned layouts or independent
layouts, as shown in our initial example. Aligned layouts help users find similar
nodes in different layers by forcing the same node to have the same coordinates
on all layers, but structures existing only on one layer (for example communities)
may not be clearly visualized. Independent layouts can show specific structures
of each layer, but may hide inter-layer patterns [26].

In flattening-based methods all nodes and edges are placed on the same plane.
In a node-colored network, nodes from different layers are shown with different
colors [16], while for multiplex networks colors can be used to distinguish edges of
different types. Apart from suffering from the same problems of aligned slicing,
the disadvantage of this method is that for networks with high edge density
relationships among nodes can be hidden by edges from non-relevant layers and
readability quickly decreases due to the network’s clutter.

Given the information overload associated to the presence of multiple types
of edges, a third approach consists in adding a so called simplification step before
using one of the two approaches above [26]. The simplification step removes edges
or layers that are not considered relevant for the visualization task. In general,
this can also be used as a pre-processing step before computing our multiforce
layout.

The last approach tries to visualize information derived from the network
instead of directly visualizing the original layers, which are again considered
to be too complex to allow a simple visual representation. Renoust et al. [25]
proposed a system for visual analysis of group cohesion in flattened multiplex
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networks. This system, called Detangler , creates a so-called substrate network
from unique nodes of the multiplex network and a so-called catalyst network
from edges of different types. Erten et al. [30] proposed three modified force-
directed approaches for creating slicing, flattened and split views of multilayer
networks by considering edge weights and node weights. The weights of nodes
and edges are based on the number of times they appear in different layers.
In this approach interlayer relationships between nodes are ignored and node
weights are the same for all nodes when multiplex networks are visualized, so
this approach does not consider the specific features of the networks targeted in
our work.

An extreme case of indirect methods, that we mention for completeness,
consists in not visualizing nodes and edges at all but only indirect network prop-
erties, such as the degree of the nodes in the different layers or other summary
measures [4,24,26]. These approaches are complementary to graph drawing, and
can also be used in combination with our proposal.

5 Conclusion

A theoretically optimal force-based layout for multiplex networks would be able
to reveal the structure of each layer and the relationships between different layers
at the same time. Unfortunately, this is not possible in general, because these
two aspects may not be aligned in real data, with some layers not being similar
to the others.

To address this problem, we proposed multiforce, a force-directed algorithm
in which both intra-layer and inter-layer forces can affect the position of nodes.
Intra-layer forces keep connected nodes together and improve the identification
of communities, while inter-layer forces help users finding the same nodes in
different layers.

In the evaluation of the method we showed that while the algorithm supports
more traditional layouts it can also generate what we call balanced visualizations
where both internal properties and node alignments are handled. This has been
presented on a real dataset, to give a qualitative idea of how the layouts produced
by this approach look like, and quantitatively, introducing two quality metrics
and showing how a balanced approach can satisfactorily address both at the
same time on several real datasets from different domains. At the same time,
traditional approaches are better at optimizing either one or the other quality
metric. We thus believe that the main value of multiforce is its ability to represent
all the strategies mentioned in the article, so that an analyst can switch from
one to the other depending on which aspects s/he wants to focus on.
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