
Partial and Overlapping Community
Detection in Multiplex Social Networks

Nazanin Afsarmanesh Tehrani1,2 and Matteo Magnani1,2(B)

1 Gavagai, Stockholm, Sweden
nazanin.afsarmanesh@gavagai.se

2 InfoLab, Department of Information Technology,
Uppsala University, Uppsala, Sweden

matteo.magnani@it.uu.se

Abstract. We extend the popular clique percolation method to multi-
plex networks. Our extension requires to rethink the basic concepts on
which the original clique percolation algorithm is based, including cliques
and clique adjacency, to handle the presence of multiple types of ties. We
also provide an experimental characterization of the communities that
our method can identify.

Keywords: Multiplex network · Community detection · Overlapping
Partial · Clique · Clique percolation

1 Introduction

Community detection is one of the most popular social network analysis tasks,
for which a large number of algorithms have been developed [1,2]. The number
of existing methods is not only justified by the importance of this task, but
also by the absence of a unique definition of what a community is: different
algorithms are often designed to identify different types of communities, and it
is thus practically important for a social network analyst to have a toolbox with
alternative algorithms.

The clique percolation method [3] is based on the intuition that the presence
of a community can be observed in a social network through the presence of
cliques, that is, sets of actors who are all adjacent to each other. This method
has a set of features that make it well-suited to the discovery of communities
in social networks: (1) it allows to specify how much connectivity is necessary
to recognize the presence of a community (minimum clique size k), (2) it allows
the same actor to be present in multiple communities (overlapping), and (3) it
does not force all actors to be part of a community (partial).

However, this approach is currently only defined for networks with one single
type of tie, while in social networks individuals often interact with different
groups of people, such as friends, colleagues, and family, and this determines
multiple types of relationships, including multiple types of ties between the same

c⃝ Springer Nature Switzerland AG 2018
S. Staab et al. (Eds.): SocInfo 2018, LNCS 11186, pp. 15–28, 2018.
https://doi.org/10.1007/978-3-030-01159-8_2



16 N. Afsarmanesh Tehrani and M. Magnani

pairs of actors. Therefore, in this paper we extend this approach to deal with
multiplex networks, to add clique percolation and the special features of its
communities to the multiplex network analysis toolbox.

To increase the expressiveness of models based on simple graphs, multiplex
networks [4,5] and heterogeneous information networks [6] have been introduced,
among other models, allowing vertices and edges to have different types and to
be described by multiple attributes. A specific type of multiplex system, called
multiplex network, is characterized by vertices that can be connected through
multiple types of edges and has been used for almost one century in the field
of social network analysis [7,8]. For what concerns community detection, peo-
ple have developed several methods to find overlapping communities in simple
graphs [9]. Clique based methods [3,10,11], fuzzy community detection algo-
rithms [12,13] and link partitioning methods [14,15] are examples of overlapping
clustering algorithms.

To the best of our knowledge, these two lines of research have been almost
completely distinct so far: while we have methods for overlapping community
detection on simple graphs [9], and we have partitioning community detection
methods for multiplex networks [16], the problem of detecting overlapping com-
munities in multiplex networks has only been addressed by three methods based
on different definitions of community, including the one presented in this paper.

Some approaches convert the multiplex network to a simple graph [17–20],
and then employ existing methods. However, this may result in information loss,
because the clustering algorithm would not know whether a set of edges belongs
to the same or to different edge types, potentially leading to the discovery of
communities scattered across a large number of edge types and weak ties.

2 Preliminaries

Multiplex networks are graph-based data structures where the same pair of ver-
tices can be connected by different types of edges.

Definition 1 (Multiplex network). Given a set of vertices V and a set of
edge types L, a multiplex network is defined as a triple M = (V,E,L) where
E ⊆ V × V × L.

The objective of the method introduced in this paper is to identify a set of
communities, also known as community structure. Here we define a community
as a set of vertices combined with a set of edge types, to indicate that for example
a group of actors can be part of a friend and family community without being
part of a work or sport community.

Definition 2 (Community). Given a multiplex network M = (V,E,L), a
community is defined as a set C ⊆ 2V × 2L.

This definition of community allows both vertices and edge types to overlap
across communities, and does not force all vertices and edge types to be included



Partial and Overlapping Community Detection in Multiplex Social Networks 17

in any community. This is a special case of the type of community that is used
for example by the generalized Louvain [21] method, which is defined as a set of
pairs (v, l) ∈ V × L. However, differently from the generalized Louvain method
and in line with the multiplex community detection methods Abacus [22] and
Infomap [23], our multiplex clique percolation approach may find communities
that are overlapping on the same edge type1 and also partial.

The clique percolation method was introduced by Palla et al. in 2005 [3]. For a
given k, CPM builds up communities from k-cliques, that is, complete subgraphs
in the network with k vertices. Two k-cliques are said to be adjacent if they share
k − 1 vertices. A k-clique community is defined as a maximal union of k-cliques
that can be reached from each other through a series of adjacent k-cliques. In
general, if the number of links is increased above some critical point, a giant
community would appear that covers a vast part of the system. Therefore, k is
chosen as the smallest value where no giant community appears. CPM allows
overlapping communities in a natural way as a vertex can belong to multiple
cliques. Figure 1 shows an example of how CPM works. Given an input graph,
first maximal cliques are identified, then adjacent cliques are grouped together
to form communities.

Input graph Maximal cliques Clique adjacency

Adjacency-connected groups Corresponding clusters

Fig. 1. A step-by-step view of the original clique percolation method

1 Using the generalized Louvain method, every pair (v, l) is included in exactly one
community.



18 N. Afsarmanesh Tehrani and M. Magnani

3 Multiplex Clique Percolation

Our extended CPM algorithm for multiplex networks (CPMM ), of which we
describe an implementation in the next section, follows the same main general
steps of CPM. However, the concepts on which it is based must be extended to
multiplex networks. In particular, we need to define what a clique on multiple
edge types is, when two multiplex cliques can be considered adjacent, and how
adjacent cliques should be grouped to build communities.

3.1 Cliques on Multiple Edge Types

While a clique on a simple graph is a well understood structure, defined as a set
of vertices that are all adjacent to each other, the same concept can be extended
in different ways for multiplex networks depending on how multiple edge types
are allowed to contribute to the clique connectivity. Considering a specific set of
edge types, we might require that a clique contains all the possible edges on all
these edge types. In other words, a clique is formed by a combination of cliques
on individual edge types. We refer to this type of cliques as AND-cliques.

Definition 3 (k-m-AND-clique). Let Lij be the set of edge types between ver-
tices i and j. We define a k-m-AND-clique as a subgraph in the multiplex network
with k vertices that includes a combination of at least m different k-cliques from
m different edge types. In other words, a k-m-AND-clique is a subgraph with k
vertices C where

|
⋂

i,j∈C

Lij | ≥ m (1)

Similar to the case of cliques on simple graphs, we can define a concept of
maximality for cliques in multiplex networks, where neither k nor m can be
increased.

3.2 Adjacency and Communities

When cliques may exist on different edge types, the concept of adjacency should
also consider this aspect.

To illustrate why, consider a definition of adjacency where k-m-AND-cliques
only need to share k − 1 vertices to be considered adjacent. As shown in Fig. 2
(lhs) adjacent cliques do not necessarily share any edge types on all pairs and

Fig. 2. Adjacent cliques



Partial and Overlapping Community Detection in Multiplex Social Networks 19

they might share edge types only on their common pairs of vertices. It is worth
noting that more diversity among the edge types in external connections of
adjacent cliques results in denser internal connectivity. In addition, cliques at
distance one still have to share some edge types on some of their pairs of vertices,
as in the figure, but when the distance between cliques becomes greater than one,
as in Fig. 2 (rhs), they may end up having completely different edge labels. To
enforce uniformity among edge types throughout the whole community, we thus
need more constraints than what we can define at the level of clique adjacency.

Definition 4 (Multiplex clique-based community). A multiplex clique-
based [(k − m)-AND-clique](m′,m′′) community is the maximal union of m′-
adjacent k-m-AND-cliques where all cliques share at least m′′ edge types on all
of their pairs of vertices.

Please notice that this is a very general definition, and in practice we can
just use two parameters: k and m(=m,m′,m′′).

3.3 Algorithm

In Fig. 3 we have sketched an algorithm to detect communities according to our
definitions, where without loss of generality we will assume that m = m′ = m′′.
The details of the algorithm, including pseudo-code, are given in the appendix
[24], and the algorithm is available in the multinet library2.

The algorithm is divided into three parts, as in the original method: finding
cliques, which can be done using an extension of Bron–Kerbosch’s algorithm,
building the adjacency graph, and extracting communities.

In a simple graph, each clique is included in exactly one community, therefore,
communities can be identified from a clique-clique overlap matrix (see [3] for the
details). However, this statement is not necessarily true for k-m-AND-cliques
and the corresponding communities. Because of the more complicated relations
between cliques, instead of the overlap matrix used in the original method we
generate an adjacency graph as in Fig. 3. In the graph we have indicated for each
vertex the edge types where the corresponding clique is defined.

Two cliques can be included in at least one community if: (1) there exists a
path between the corresponding vertices in the clique-adjacency graph, and (2)
for all vertices in the path the corresponding cliques share at least m edge types
on all of their pairs. Therefore, each community corresponds to a maximal tree
in the clique-adjacency graph where condition (2) holds.

Figure 3 shows all the maximal trees from our clique-adjacency graph for
m ≥ 1. As we see, clique c4 can be included in three communities: C1, C2 and
C3. No new clique can be added to these sets without reducing the value of m
for which the cliques’ constraint holds. As an example, community C4 satisfies
the cliques’ constraint for m = 2. Adding any adjacent clique to it, like c3, c5
and c6, the constraint would no longer hold for m = 2 because only one edge
type would be common for both cliques. In Fig. 3 for each maximal tree we have
2 https://CRAN.R-project.org/package=multinet.



20 N. Afsarmanesh Tehrani and M. Magnani

indicated the edge types where the constraint is satisfied, and we also show all
communities in this example for m ≥ 1.

Input graph Maximal cliques Adjacency graph

Maximal adjacent structures

Clusters Clusters

Fig. 3. A step-by-step view of our method

4 Experiments

4.1 Qualitative Analysis

Table 1 shows the result of our experiments on a real multiplex network of five
edge types [27] coding five types of relationships inside a university department
(Facebook, Work, Lunch, Co-authorship, Leisure) on 61 employees, with k=3
and m=2; we only report communities that share at least two edge types, not
those that can be found on single edge types one by one. Our algorithm finds 26
communities where the size of communities vary from 3 to 12 vertices. The edge
types Facebook, Work and Lunch which are denser than Leisure and Coauthor
appear more frequently among the communities. As expected, some of the 61
vertices in the network are not included in any community.

It can be realized from this table that we can identify different types of
overlapping vertices among communities in multiplex networks. If we consider
the communities on the two edge types Lunch and Work, e.g. C3 and C5, the
structure of communities are more or less similar to the case of single net-
works as the communities are well-separated with a limited number of over-
lapping vertices. This can be considered as a general rule for the case where the
sets of contributing edge types are the same. On the other hand, we have two
communities C21 and C22 where the sets of contributing edge types are not



Partial and Overlapping Community Detection in Multiplex Social Networks 21

exactly the same. These two communities have 5 overlapping vertices while C21
has only 6 vertices. This is in fact a consequence of what we experienced earlier,
that is, cliques can be included in different communities on different combinations
of edge types. In addition, we can also have hierarchical community structures:
small communities with a larger number of contributing edge types inside larger
communities with a smaller number of edge types, such as C16 and C17.

These overlapping structures identified by our method, with core communi-
ties built on many edge types and larger communities including more peripheral
vertices on less edge types, are compatible with the type of communities often
observed in online social networks, as studied by [28].

Table 1. Communities identified in a real data set for k=3 and m=2

# Vertices Edge types

C01 U107 U1 U29 U32 Facebook lunch

C02 U124 U109 U47 Facebook lunch

C03 U130 U134 U4 Lunch work

C04 U91 U65 U72 Lunch work leisure

C05 U4 U112 U68 U141 Lunch work

. . .

C16 U59 U91 U110 Facebook lunch work leisure

C17 U59 U91 U110 U113 U138 Work leisure

. . .

C21 U109 U18 U3 U54 U76 U79 Facebook lunch

C22 U109 U126 U3 U54 U76 U79 U90 Lunch leisure

C23 U106 U118 U41 Lunch work leisure

C24 U123 U59 U71 U91 U130 U47 + 6 Facebook work

. . .

4.2 A Quantitative Characterization of the Obtained Communities

Table 2 shows various statistics describing the communities found in a multi-
plex network about co-authorship in the arxiv repository on 13 research fields,
corresponding to 13 edge types, using different parameters.

From the statistics we can see that the algorithm actually finds overlapping
and partial communities. Notice that this is expected, but not necessary, as
depending on the data and parameters not all the types of communities expected
in theory necessarily exist or are found, a typical example being the generalized
Louvain algorithm where for many values of the interlayer coupling parameter
vertices are forced into the same community for all edge types.

We can also see a significant overlapping inside edge types (%over et), indi-
cating for example that the same individual can part of multiple communities
inside the same research field.



22 N. Afsarmanesh Tehrani and M. Magnani

Table 2. Quantitative characterization of the community structures identified by the
algorithm. #c: number of communities. sc1: size of largest community. sc2/1: relative
size of second largest community wrt largest community. %in com: portion of vertices
included in at least one community. %all et portion of vertices included in the same
community for all edge types. %over v: portion of vertices included in more than one
community on different edge types. %over et: portion of vertices included in more than
one community on the same edge type

k m #c sc1 sc2/1 %in com %all et %over v %over et

3 1 4278 1562 0.96 0.84 0.28 0.35 0.36

3 3 773 144 0.96 0.26 0.31 0.31 0.32

3 5 82 42 0.95 0.04 0.28 0.25 0.25

5 1 1320 70 0.86 0.36 0.47 0.22 0.20

5 3 180 56 0.80 0.10 0.39 0.17 0.17

5 5 9 42 0.95 0.01 0.24 0.20 0.13

7 1 248 60 0.93 0.11 0.60 0.10 0.09

7 3 33 56 0.80 0.03 0.44 0.11 0.08

7 5 1 40 0.00 0.00 0.12 0.00 0.00

The ratio sc2/1 shows that no single giant community is identified with
the tested settings. In addition, the number of communities decreases when k
increases and when m increases. This, in addition to the ability to extract denser
communities, can also be exploited to reduce computation time.

5 Discussion

In this paper we have extended the CPM method to identify overlapping com-
munities in multiplex networks. We have first focused on the formal definition of
the method, discussing how to extend existing concepts to the multiplex context,
defined an algorithm and studied its empirical behavior on real datasets. Some
interesting aspects emerge from the formal definition of the method and from
our experiments.

The attempt to keep communities homogeneous results in a phenomenon not
visible when single graphs and the original method are used. While in CPM the
same vertex can belong to multiple communities, in CPMM whole cliques can
belong to different communities, as demonstrated in our working example. This
suggests that the type of overlapping produced using our approach enables the
identification of some kind of hierarchical community structures.

As a final consideration, if some edge types are denser than others they may
end up appearing more often in the found communities. A possible way to reduce
the prominence of some edge types is to then remove these edge types and run
the method again for decreased k and m, to find more communities on other edge
types. However, evaluating this approach requires a more extensive qualitative
analysis than the one fitting this paper, and we leave it to future work.



Partial and Overlapping Community Detection in Multiplex Social Networks 23

Acknowledgments. This work was partially funded by the European Union’s Hori-
zon 2020 research and innovation program under grant agreement No. 732027.

A Algorithm

The algorithm is divided into three parts, as in the original method: finding
cliques, building the adjacency graph, and extracting communities.

A.1 Finding Cliques

Our algorithms starts by locating all maximal k-m-AND-cliques. Algorithm1 is
an extension of Bron–Kerbosch’s algorithm. It is a recursive algorithm where
the recursive step takes a clique A as input and returns all maximal k-m-AND-
cliques containing A that can be constructed using vertices in B, with k ≥ k
and m ≥ m. In this way, given a multiplex network M = (V,E,L), a call to
find-cliques({}, V, {}, k,m) with k > 1 and m > 0 returns all maximal cliques in
M with k ≥ k and m ≥ m.

The algorithm works by updating two sets: one containing vertices that can
be used to extend the currently processed clique, and one to keep track of already
examined cliques. More precisely, the parameter B is a set of vertices such that,
for every vertex n ∈ B, A ∪ {n} is a previously unseen clique on at least m
edge types. Whenever a vertex from B is used to extend the clique A, then B is
updated by removing those vertices that are no longer connected to all vertices
in the new clique A′. C is the same as B, but containing those vertices that have
already been examined by the algorithm during some previous iteration, so that
no duplicates are produced. Given a set of vertices A we notate the set of edge
types where the vertices in A form a clique as L(A), and the number of vertices
in A as S(A). Therefore, if |L(A)| = 0 then A is not a clique on any edge type.
We also define max(∅) = 0.

As an example, assume we call find-cliques({}, {0, 1, . . . , 9}, {}, 3, 1) on the
network in Fig. 3. The algorithm would then start exploring one of the ver-
tices in B, let us say 5. The new call will thus include in B only those ver-
tices that can still form a clique on at least one edge type when joined with
5: find-cliques({5}, {2, 3, 4, 6, 8}, {}, 3, 1). Let us now assume that at the next
iteration 3 is added to the current clique: find-cliques({3, 5}, {2, 6}, {}, 3, 1),
and then 6: find-cliques({3, 5, 6}, {2}, {}, 3, 1). At this point S(A) is 3, satis-
fying the minimum clique size, and |L({3, 5, 6})| = 2 > max({|L(A ∪ {b})| :
b ∈ B}) = max({|L({2, 3, 5, 6})|}) = 1. In fact, {3, 5, 6} is a clique on two
edge types, while {2, 3, 5, 6} is a clique on only one edge type. Therefore, the
current clique is returned as a maximal one (c4 in Fig. 3). At the next iter-
ation, find-cliques({2, 3, 5, 6}, {}, {}, 3, 1) is called and clique c3 is returned. At
some later point, the algorithm would call find-cliques({2, 3, 5}, {}, {6}, 3, 1), not
returning any clique because C = {6} indicates that this path has already been
explored, and find-cliques({4, 5}, {2}, {3}, 3, 1), ultimately leading to the discov-
ery of clique c1, and so on.



24 N. Afsarmanesh Tehrani and M. Magnani

Algorithm 1. find-cliques(A,B,C, k,m) returns all maximal k-m-AND-cliques
containing A that can be constructed using vertices in B, with k ≥ k and m ≥ m
Input: A a clique
Input: B a set of vertices n such that A ∪ {n} is also a clique
Input: C a set of vertices n such that A ∪ {n} has already been processed by the

algorithm before
Input: k minimum number of vertices to output a clique
Input: m minimum number of layers to output a clique
1: if S(A) ≥ k ∧ max({|L(A ∪ {b})| : b ∈ B}) < |L(A)| ∧ max({|L(A ∪ {c})| : c ∈

C}) < |L(A)| then
2: OUTPUT A
3: end if
4: for b ∈ B do
5: A′ = A ∪ {b}
6: B = B \ {b}
7: B′ = {b′ ∈ B : |L(A′ ∪ {b′})| ≥ m}
8: C′ = {c′ ∈ C : |L(A′ ∪ {c′})| ≥ m}
9: find-cliques(A′, B′, C′, k,m)
10: C = C ∪ {b}
11: end for

A.2 Clique-Adjacency Graph

In a simple graph, each clique is included in exactly one community, therefore,
communities can be identified from a clique-clique overlap matrix (see [3] for the
details). However, this statement is not necessarily true for k-m-AND-cliques
and the corresponding communities. Because of the more complicated relations
between cliques, instead of the overlap matrix used in the original method we
generate an adjacency graph as the one represented in Fig. 3, where each vertex
of the graph corresponds to a maximal clique and an edge between two vertices
indicates that the corresponding cliques share at least k vertices and at least
m edge types on all of their pairs of vertices. In the graph we have indicated
for each vertex the edge types where the corresponding clique is defined. In the
following we refer to this graph as clique-adjacency graph.

A.3 From the Clique-Adjacency Graph to Communities

As previously mentioned, each clique can be included in different communities
with different combinations of its adjacent cliques. Here our objective is using the
adjacency graph and the information regarding the edge labels simultaneously
to find communities in the Multiplex network. Two cliques can be included in
at least one community if: (1) there exists a path between the corresponding
vertices in the clique-adjacency graph, and (2) for all vertices in the path the
corresponding cliques share at least m edge types on all of their pairs. We call
the latter rule the cliques’ constraint, and we call a tree maximal if no other
adjacent clique can be added without reducing the maximal m for which the



Partial and Overlapping Community Detection in Multiplex Social Networks 25

cliques’ constraint is satisfied. Therefore, each community in the original network
corresponds to a maximal tree in the clique-adjacency graph where the cliques’
constraint holds for all vertices in the tree. So the problem is equivalent to
recognizing all such maximal trees in the graph.

Algorithm3 takes a community A as input and returns all maximal communi-
ties containing A. In this algorithm, given a set of cliques (that is, a community)
A we notate the set of edge types we are currently considering to find a maximal
community as Λ(A). Notice that Λ(A) ⊆ L(A): we are going to run this algo-
rithm multiple times starting from the same clique with different Λ(A)’s, that
is, looking for communities in different sets of edge types. We also define N(c)
as the neighbors of c in the adjacency graph, as before.

Algorithm3 consists of two phases. First, it finds a maximal community on
Λ(A) (lines 1–15). Then, it recursively does the same for all subsets of Λ(A)
for which larger communities can be found (lines 17–20). B contains the set of
cliques that may be used to extend the community A.

To understand the algorithm we invite the reader to start inspecting lines 1–
3, 7–8, and 13–15: this is just a simple depth-first visit of the adjacency matrix,
finding the largest connected component containing A only traversing cliques
that exist on all the edge types in Λ(A) (line 3). This visit, that finds the maxi-
mal community containing A on Λ(A), is extended in two ways. First, lines 4–6
make sure that we do not produce communities that have already been found
starting from another clique: if we encounter an already processed clique con-
taining all the edge types in L(A), then this community must have been found
while processing it. Second, lines 9–12 cover the case when during the visit we
encounter a neighboring clique that only contains a subset L′ of Λ(A). This
means that there is a community containing A that is maximal on L′. Conse-
quently, for each L′ we encounter during the process we will later call Algorithm3
again to extract a maximal community containing A on those edge types (line
17–19). Line 16 makes sure that we do not process the same set L′ more then
once (notice that the elements of D are sets of edge types). The fact that the
different L′’s correspond to cliques that we have encountered while visiting the
adjacency matrix guarantees that we are not running the algorithm for all the
subsets of L(A) but only for those for which a community exists.

Algorithm 2. find-communities(Cliques,m)
Input: Cliques is the set of cliques produced by the previous step
Input: m is the minimum number of edge types to output a community
1: C = ∅
2: for c ∈ Cliques do
3: A = {c}
4: Λ(A) = L({c})
5: find-communities(A,N({c}), C, ∅,m)
6: C = C ∪ {c}
7: end for



26 N. Afsarmanesh Tehrani and M. Magnani

Algorithm2 uses Algorithm3 to iterate over all cliques and finds all maximal
communities containing the clique under examination for any m ≥ m. Therefore,
at the end it outputs all maximal communities.

A.4 Time Complexity

Finding maximal cliques is an NP-hard problem, that is, one for which even
small datasets can take too long to be processed. In practice, as for its simple-
graph version, the execution time of the multiplex clique percolation algorithm
depends on the input data and in particular on the number and size of cliques.

Table 3 shows the algorithm’s execution time for real multiplex social net-
works of increasing size from an online repository (http://multilayer.it.uu.se), on
a 2,4GHz Intel Core i7 desktop computer with 16GB RAM. We have repeated
each execution 5 times, observing similar results (the mode is indicated in the
table) and we have stopped the computation after 10min. The drastic drop
in execution time for the dkpol dataset (including follow, mention and retweet
edge types from Twitter) when stricter constraints are used, and the execution
times on the ff-tw-yt data, representing common users from three online social

Algorithm 3. find-communities(A,B,C,D,m) returns all maximal communi-
ties containing A.
Input: A is a set of cliques (partial community)
Input: B is the set of cliques that can be used to extend the community A
Input: C contains the vertices already processed by the algorithm
Input: D is a set of sets of edge types, not to process the same set of edges again
Input: m is the minimum number of edge types to output a community
1: while B ̸= ∅ do
2: c = B.pop()
3: if Λ(A) ⊆ L({c}) then
4: if c ∈ C then
5: return
6: end if
7: A = A ∪ {c}
8: B = B ∪ N(c) \A
9: else if |Λ(A) ∩ L({c})| ≥ m then
10: if L({c}) /∈ D then
11: S = S ∪ {c}
12: end if
13: end if
14: end while
15: OUTPUT A
16: D = D ∪ Λ(A)
17: for L′ ∈ {L(c) : c ∈ S} do
18: Λ(A) = L′

19: find-communities(A,S,C,D,m)
20: end for



Partial and Overlapping Community Detection in Multiplex Social Networks 27

Table 3. Execution time (s)

Data #edges k = 3,m = 1 k = 4,m = 2

aucs 620 0 0

dkpol 20226 >600 1

arxiv 59026 569 547

ff-tw-yt 74862 >600 106

dblp 222510 >600 >600

networks, highlight how the computation time strongly depends on the data
structure and is not linearly dependent on the network size. At the same time,
these experiments show the effect of the constraints on execution time.

References

1. Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3–5), 75–174 (2010)
2. Coscia, M., Giannotti, F., Pedreschi, D.: A classification for community discovery

methods in complex networks. Stat. Anal. Data Min. 4(5), 512–546 (2011)
3. Palla, G., Derényi, I., Farkas, I., Vicsek, T.: Uncovering the overlapping community

structure of complex networks in nature and society. Nature 435(7043), 814–818
(2005)

4. Kivelä, M., Arenas, A., Barthelemy, M., Gleeson, J.P., Moreno, Y., Porter, M.A.:
Multiplex Networks. J. Complex Netw. 2(3), 203–271 (2014)

5. Dickison, M.E., Magnani, M., Rossi, L.: Multiplex Social Networks. Cambridge
University Press, Cambridge (2016)

6. Sun, Y., Han, J.: Mining Heterogeneous Information Networks: Principles and
Methodologies. Synthesis Lectures on Data Mining and Knowledge Discovery.
Morgan & Claypool Publishers, San Rafael (2012)

7. Bott, H.: Observation of play activities in a nursery school. Genet. Psychol.
Monogr. 4, 44–88 (1928)

8. Moreno, J.L.: Who Shall Survive? A New Approach to the Problem of Human
Interrelations. Nervous and Mental Disease Publishing Co., Washington, D. C.
(1934)

9. Xie, J., Kelley, S., Szymanski, B.K.: overlapping community detection in networks:
the state-of-the-art and comparative study. ACM Comput. Surv. (CSUR) 45(4)
(2013)

10. Kumpula, J.M., Kivelä, M., Kaski, K., Saramäki, J.: Sequential algorithm for fast
clique percolation. Phys. Rev. 78(2), 026109 (2008)

11. Yan, B., Gregory, S.: Detecting communities in networks by merging cliques. In:
IEEE International Conference on Intelligent Computing and Intelligent Systems,
ICIS 2009, vol. 1, pp. 832–836. IEEE (2009)

12. Nepusz, T., Petróczi, A., Négyessy, L., Bazsó, F.: Fuzzy communities and the
concept of bridgeness in complex networks. Phys. Rev. E 77(1), 016107 (2008)

13. Zhang, S., Wang, R.-S., Zhang, X.-S.: Identification of overlapping community
structure in complex networks using fuzzy c-means clustering. Phys. A Stat. Mech.
Its Appl. 374(1), 483–490 (2007)



28 N. Afsarmanesh Tehrani and M. Magnani

14. Ahn, Y.-Y., Bagrow, J.P., Lehmann, S.: Link communities reveal multiscale com-
plexity in networks. Nature 466(7307), 761–764 (2010)

15. Evans, T.S., Lambiotte, R.: Line graphs, link partitions, and overlapping commu-
nities. Phys. Rev. E 80(1), 016105 (2009)

16. Bothorel, C., Cruz, J.D., Magnani, M., Micenkova, B.: Clustering attributed
graphs: models, measures and methods. Netw. Sci. 3(3), 408–444 (2015)

17. Berlingerio, M., Coscia, M., Giannotti, F.: Finding and characterizing communities
in multidimensional networks. In: International Conference on Advances in Social
Networks Analysis and Mining (ASONAM), pp. 490–494 (2011)

18. Cai, D., Shao, Z., He, X., Yan, X., Han, J.: Community mining from multi-relational
networks. In: Jorge, A.M., Torgo, L., Brazdil, P., Camacho, R., Gama, J. (eds.)
PKDD 2005. LNCS (LNAI), vol. 3721, pp. 445–452. Springer, Heidelberg (2005).
https://doi.org/10.1007/11564126 44

19. Rodriguez, M.A., Shinavier, J.: Exposing multi-relational networks to single-
relational network analysis algorithms. J. Inf. 4(1), 29–41 (2010)

20. Tang, L., Wang, X., Liu, H.: Community detection via heterogeneous interaction
analysis. Data Min. Knowl. Discov. 25(1), 1–33 (2012)

21. Mucha, P.J., Richardson, T., Macon, K., Porter, M.A., Onnela, J.-P.: Commu-
nity structure in time-dependent, multiscale, and multiplex networks. Science
328(5980), 876–8 (2010)

22. Berlingerio, M., Pinelli, F., Calabrese, F.: ABACUS: frequent pAttern mining-
BAsed Community discovery in mUltidimensional networkS. Data Min. Knowl.
Discov. 27(3), 294320 (2013)

23. De Domenico, M., Lancichinetti, A., Arenas, A., Rosvall, M.: Identifying modular
flows on multilayer networks reveals highly overlapping organization in intercon-
nected systems. Phys. Rev. X 5(1), 11027 (2015)

24. Afsarmanesh, N., Magnani, M.: Finding overlapping communities in multiplex net-
works. https://arxiv.org/abs/1602.03746

25. Magnani, M., Rossi, L.: The ML-model for multi-edge type social networks. In:
International Conference on Social Network Analysis and Mining (ASONAM), pp.
5–12. IEEE Computer Society (2011)

26. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in net-
works. Phys. Rev. E 69(2), 026113 (2004)

27. Rossi, L., Magnani, M.: Towards effective visual analytics on multiplex and multi-
layer networks. Chaos Solitons Fractals 72, 68–76 (2015)

28. Leskovec, J., Lang, K.J., Mahoney, M.W., Dasgupta, A.: Statistical properties of
community structure in large social and information networks. In: Proceeding of
the 17th International Conference on World Wide Web - WWW 2008, p. 695 (2008)


